



## **Resin & Mineral Ophthalmic Lenses**

UNCUT AND GLAZED CATALOGUE (UNPRICED)



## THE NORVILLE GROUP



Norville operates as an independent family business from our Gloucester prescription hub, supported by our three other prescription processing locations regionally.

Norville takes great pride in utilising the latest communication, design and CNC production equipment and blending this with traditional craft skills to ensure that your glazed prescription spectacles or uncuts are of the best cosmetic and optical finish. We remain at the forefront of prescription lens developments and their associated in-house hardcoating, reflection-free and Easy Clean top-coat technologies, as well as anti-fogging and Reactolite processes. We operate a freeform state-of-the-art HD lens production centre at Gloucester for both resin & glass HD spectacle lenses. The latter being one of one here in the UK.

Norville team members are all very mindful that quality of customer service is our paramount objective. If at any time I or my colleagues can be of assistance, please do not hesitate to make personal contact.

Joseph G Norvelle.

#### **GUIDE TO SYMBOLS**

#### GENERAL INFORMATION



STOCK FINISHED single vision lens option



#### **AUTOSELECT**

Short and Long Corridor - design computer selection determined by FITTING HEIGHT



specified



VARIABLE INSET 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering



Special order / hand working additional delay shown in working days



New product listing



High addition availability



Available as a wrap lens +8.00 base or higher limited Rx range ±4D

3DFR

Computer lens codes 4 digit alpha/numeric. Complete alphabetical listing is available on our website





T N/A Tint not available



Available tinted to the darkest L.T.F. stated



Reflection-free MAR coat not possible

#### **DIGITAL SURFACING**

Inner Surface High Definition design



**Double Front & Back Lens Surfaces** High Definition design



Inner Surface Atoric

ISB

Inner Surface Bifocal

ISM

Inner Surface Multifocal

ISP

**Inner Surface Progressive ULTOR** is available in

General Outdoor Desk Sportor



SENTOR is available in

General Outdoor



**VECTOR** 

DIGITOR are available in **G**eneral Only **PARAGON** 

Other specialist progressives as named.







| group                                                                                                                     |                                                                                                         |                                                                                                                                                        |                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Technical Information Plano Finished Stock  RESIN LENSES                                                                  | Pages 2, 4 and 5<br>Pages 6 - 7                                                                         | RESIN LENSES Tints / Coatings Mirror Hardcoat / Anti-fog                                                                                               | Page 130<br>Page 131                                                                      |
| 1.50 Index Single Vision Fresnel Press on Finished Stock Surfaced Specialist Photochromic Drivewear                       | Page 8 Pages 10 - 12 Page 13 Pages 14 - 15 Page 16 Page 17                                              | Reactolite Clarity Coatings Mono Tints Graduated Tints Dot Com Tints Custom / ReadEZ Resin Tints Specialist Resin Tints  Supplementary Charges - Resin | Page 131 Page 132 Page 133 Page 133 Page 134 Page 134 Page 135                            |
| Polarised<br>Bifocals<br>Round<br>Free-form<br>Flat Top                                                                   | Pages 17 - 18  Pages 19 - 20  Pages 21 - 22  Pages 23 - 24                                              | Digital Surfacing<br>Surfaced Lenses<br>Glazing and Fitting                                                                                            | Page 136<br>Pages 136 - 137<br>Pages 138 - 139                                            |
| C Seg E Style E Style Trifocals Degressives / Occupational Progressives Occupational Progressives                         | Page 24 Page 25 Pages 25 - 26 Pages 27 - 28 Pages 29 - 37 Page 38                                       | MINERAL LENSES  1.50 Index Single Vision Bifocals Progressives  1.523 Index                                                                            | Page 141<br>Page 141<br>Page 141                                                          |
| Trivex 1.53 Index Single Vision Bifocals/Trifocals Degressives / Occupational Progressives  1.56 Index                    | Pages 40 - 44<br>Pages 45 - 47<br>Page 48<br>Pages 49 - 56                                              | Single Vision Finished Stock Surfaced Bifocals Trifocals Degressives Progressives                                                                      | Page 142<br>Pages 142 - 143<br>Pages 144 - 145<br>Page 145<br>Page 145<br>Pages 146 - 147 |
| Vista-Mesh<br>Blutech BT66  1.58 Index<br>Blutech BT70                                                                    | Pages 58 - 59<br>Page 60<br>Page 61                                                                     | 1.60 Index Single Vision Bifocals Degressives                                                                                                          | Page 149<br>Page 150<br>Page 150                                                          |
| Polycarbonate 1.59 Index Single Vision Finished Stock Surfaced Bifocals Trifocals Degressives / Occupational Progressives | Pages 63 - 64 Pages 63 - 66 Pages 67 - 68 Page 69 Pages 69 - 70 Pages 71 - 77                           | Progressives  1.70 Index Single Vision Finished Stock Surfaced Bifocals Degressives Progressives                                                       | Page 153 Page 153 Page 153 Page 153 Page 153 Page 153 Page 154                            |
| Single Vision Finished Stock Surfaced / Aspheric Bifocals Degressives / Occupational Progressives XT16 Tribrid            | Page 79 Pages 80 - 83 Pages 83 - 85 Pages 86 - 87 Pages 87 - 93 Pages 95 - 96 Pages 98 - 101            | 1.76 Index X Ray Filter  1.80 Index Single Vision Bifocals Progressives  1.90 Index                                                                    | Page 154  Page 156 Page 157 Page 157                                                      |
| Single Vision Finished Stock Surfaced Bifocals Specialist Progressives Degressives / Occupational Progressives            | Pages 103 & 105<br>Pages 103 - 106<br>Pages 106 - 108<br>Page 108<br>Pages 109 - 110<br>Pages 110 - 117 | Single Vision Bifocals Progressives  Tints / Coatings - Glass Vac Coatings  Supplementary Charges - Glass Surfaced Lenses                              | Page 158 Page 158 Page 158 Page 159 Page 160                                              |
| 1.74 Index Single Vision Bifocals Degressives / Occupational Progressives                                                 | Pages 119 - 121<br>Pages 121 - 122<br>Pages 122 - 123<br>Pages 124 - 127                                | Digital Surfacing Glazing and Fitting  Progressive Lens Remarking Templates Operational Notes                                                          | Page 161<br>Page 162<br>Pages 163 - 167<br>Page 168                                       |
| 1.76 Index Single Vision Bifocals Progressives                                                                            | Page 129<br>Page 129<br>Page 129                                                                        | Terms and Conditions Effective Diameter Chart                                                                                                          | Pages 169-170<br>Page 171                                                                 |

## SUPPLEMENTARY PROCESSING







Gives you the option of a fully compensated prescription, on any HD lens type. Please send the following information when you require this option:



**BVD** measurements (showing trial and as worn distance)



Pantoscopic tilt angle

Dihedral (wrap) angle

Norville will calculate the change to your prescription when taking all of the above into account, we will print out this "compensated prescription" at the end of the process for you to verify against. If uncut lenses are required, please supply shape, centration details and frame dimensions, in addition to above.

All Sportor/SportPal lenses will require this calculation to be undertaken so please supply the additional information at the time of ordering.

#### **SLIM EDGE PRODUCTION (S.E.P.)**

(Previously **RECRE**)



Available on all prescriptions, across all indices, including wrap designs, when ordered with any HD free-form, S.E.P. process allows the reduction of edge thickness on all powers from 5 to 20% depending on the degree of reduction of the central visual field. This process can also be used on wrap minus lenses to reduce the temporal edge thickness, which becomes more visually apparent when a steeper than normal front curve is used. Mainly used for minus Rxs, this process can also be very effective with plus Rxs.

#### **BLENDED EDGE (High Minus)**

#### SUPER-LENTI



Available as a lens type in 1.60, 1.67, 1.74 & 1.76 index up to -28.00 in both single vision and as a supplementary process on any mid/high index HD progressive up to -18.00. This process is a more intrusive lens edge blend reduction encompassing the whole circumference, therefore reducing the usable viewing area to between 30 – 42 mm, dependent on prescription. Norville would suggest this process is only used for higher index lens types where the minus power is in excess of -14.00. Lens edge thickness reduction will be in excess of 30% around the circumference of the finished lens. We can use a more visible (comfy thin finish) to achieve greater edge reduction.

### **EXTRA LARGE DIAMETER**

#### XXL



Available on all HD single vision and HD progressive lens types, especially Sportor & SportPal. This additional manufacturing process allows us, by bodily decentring the optical centre, to increase the effective diameter of an HD lens up to 100mm. This process will allow you to offer much larger spectacle frames to your patients than previously considered possible and always with the correct optical centration. Of course the physics of optics still applies and the larger the lens diameter the thicker it needs to be, so we suggest that you take this into account when determining the index of lens material you order. Of course, you can also add S.E.P. thickness reduction process into the equation.

#### **INDIVIDUAL NV INSETS**



Available on all HD Progressives. Individual near vision insets from 0.5 to 5.00 mm in each eye. So, whether you would like to increase or decrease the overall reading inset, or if you believe the patient would benefit from differing insets, please state your requirement at time of ordering.

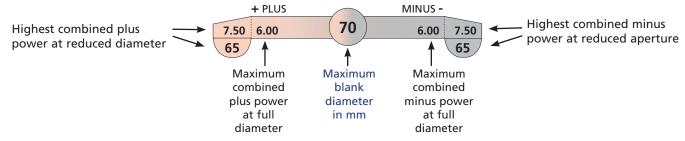
For your monocular Pxs with zero inset requirement specify MonoPal. Available in break resistant Trivex, Poly, XT16 and Tribrid.

## Norville

#### ADDITIONAL ORDERING INFORMATION

#### PPL & ISP CORRIDOR LENGTHS - AUTOSELECT

Confused which corridor length to select? - then just leave it to the Norville computer!


After the input of all decentration and height setting information overlaid on the lens shape the unique Norville lens design software will then **autoselect** the appropriate progression length - when free-form is available in individual 2mm steps. You don't even have to think about it. Should there be insufficient distance or reading remaining we will advise of alternative options.



The number appearing under the autoselect icon is the shortest fitting height recommended for that particular design. Please also allow a minimum of 10mm from the top rim when choosing your frame otherwise the user's distance portion will be insufficient for happy vision.

#### **POWER BAR**

Our prescription range indicator bar.



NB: Powers are in dioptres, diameters in mm. Pink indicates plus power, grey indicates minus.

**IMPORTANT:** When the Effective Diameter of your frame is <u>less</u> than the diameters shown, it is usually possible to extend beyond the quoted powers. Generally, as lens power increases, so the diameter proportionally reduces.

#### **SUBSTANCE**

We will always produce your lenses to the smallest diameter coincident to the frame size and decentration requirements. This will ensure the **minimum centre substance** and thus the **minimum edge substance** available on all lens products unless coded S which indicates the more economically priced stock lens diameters. For certain plus powers this may result in over-thick edge substances when glazed. Unless your order states "use stock lenses" or "stock 65mm" we will deliver Better Substance by custom lens production at the appropriate extra charge without further reference.

#### **BLANK DIAMETER**

The number shown in the "headlight" of the power bar is the maximum diameter available (semi-finished blank). Every surfaced lens can be customised to any smaller diameter down to 55mm at no additional charge.

#### LENS CYLINDER POWER AVAILABILITY

"Any sphere with any cylinder falling within total power stated on bar"

Our Rx programme is based on total power. Forget the complications of the cylinder, just transpose plus powers into minus cylinder form, minus powers into plus cylinder form. Compare this resulting sphere power against the prescription range indicator bar. If the power falls within the bar then we can make it! Including any cylinder power. Most stock lenses have restricted cylinder availability, indicated by the words opposite cyls to 2.00 or similar under the power bar. Custom production of a surfaced lens usually overcomes this limitation, certainly up to a 6.00 cyl and often far beyond, depending on the semi-finished blank thickness availability.



## Finished Plano Lenses

|              | (I                                                             | RESIN PLANC   | FINISHED —           |            | Per Lens | Per Lens |
|--------------|----------------------------------------------------------------|---------------|----------------------|------------|----------|----------|
| LENS CODE    | Type Transmission Tint/Coating                                 |               | Diameter x Thickness | Base Curve | UNCUT    | GLAZED   |
|              | PLANO WHITE                                                    |               |                      |            |          |          |
| PCOQ         | WHITE 1.50 Resin UNC                                           |               | 65 x 2.0mm           | 600        |          |          |
| PSF4         | WHITE 1.50 Resin UNC                                           |               | 65 x 2.2mm           | 400        |          |          |
| P806         | WHITE 1.50 Resin UNC                                           |               | 80 x 1.9mm           | 600        |          |          |
| PSM5         | WHITE 1.50 Resin RF                                            |               | 65 x 2.0mm           | 600        |          |          |
| PFLA         | WHITE 1.50 Resin UNC                                           |               | 75 x 2.0mm           | Flat       |          |          |
| PFP          | WHITE 1.50 Resin UNC                                           |               | 75 x 3.5mm           | Flat       |          |          |
| PLC8         | WHITE 1.50 Resin UNC                                           |               | 74 x 3.2mm           | 800 WRAP   |          |          |
| P808         | WHITE 1.50 Resin UNC                                           |               | 80 x 1.9mm           | 800 WRAP   |          |          |
| PUVW         | WHITE 1.50 Resin + UV400 NEW                                   |               | 74 x 2.0mm           | 400        |          |          |
| SUVW         | WHITE 1.50 Resin + UV400                                       |               | 74 x 2.0mm           | 600        |          |          |
| PSVC         | WHITE 1.50 Resin + UV400                                       |               | 74 x 2.0mm           | 800 WRAP   |          |          |
| TRH6         | WHITE TRIVEX HC                                                |               | 75 X 2.0mm           | 600        |          |          |
| TRT6         | WHITE TRIVEX HC                                                |               | 75 X 2.3mm           | 600        |          |          |
| TRA6         | WHITE TRIVEX RF                                                |               | 75 X 2.0mm           | 600        |          |          |
| TRH8         | WHITE TRIVEX HC                                                |               | 75 X 2.3mm           | 800 WRAP   |          |          |
| TRA8         | WHITE TRIVEX RF                                                |               | 75 X 2.3mm           | 800 WRAP   |          |          |
|              | PLANO MONO TINT                                                |               |                      |            |          |          |
| SUVB         | 1.50 Resin BROWN 15% LT + UV                                   |               | 74                   | 600        |          |          |
| SUVG         | 1.50 Resin GREY 15% LT + UV                                    |               | 74                   | 600        |          |          |
| SUVR         | 1.50 Resin GREEN 15% LT + UV                                   |               | 74                   | 600        |          |          |
|              |                                                                |               |                      |            |          |          |
|              | POLARISED                                                      |               |                      |            |          |          |
| LITE         | 1.50 Resin NUPOLAR 35% GREY 1                                  |               | 75                   | 625        |          |          |
| POLA         | 1.50 Resin NUPOLAR 15% GREY 3,                                 | •             |                      | 625        |          |          |
| POL6         | 1.50 Resin POLARISED GREY/GREEN                                |               | 80                   | 600        |          |          |
| POL8         | 1.50 Resin POLARISED GREY/GREEN                                | /BROWN        | 80                   | 800 WRAP   |          |          |
| TRNS         | TRIVEX NUPOLAR GREY/BROWN 3                                    |               | 75                   | 625        |          |          |
|              | PHOTOCHROMIC                                                   |               |                      |            |          |          |
| TRAP/TRAB    | TRANSITIONS GREY/BROWN 1.50                                    |               | 70                   | 500        |          |          |
| TXX          | TRANSITIONS XTRActive GREY/BROV                                | WN 1.50       | 65                   | 500        |          |          |
| SUS+         | SUNSENSOR GREY/BROWN 1.56                                      |               | 70                   | 500        |          |          |
|              | POLARISED PHOTOCHROMIC                                         |               |                      |            |          |          |
| DRWT         | TRIVEX DRIVEWEAR NUPOLAR TRAI                                  | NSITIONS INAR | 74                   | 625        |          |          |
|              | RESIN MIRROR                                                   |               |                      |            |          |          |
| PSBM         | BLUE MIRROR 1.50 Resin                                         | INAR/G15      | 74                   | 600        |          |          |
| PSCM         | COPPER MIRROR 1.50 Resin                                       | INAR/B15      | 74                   | 600        |          |          |
| PSEM         | GREEN MIRROR 1.50 Resin                                        | INAR/G15      | 74                   | 600        |          |          |
| PSRM         | RED MIRROR 1.50 Resin                                          | INAR/B15      | 74                   | 600        |          |          |
| PSSM         | SILVER MIRROR 1.50 Resin                                       | INAR/G15      | 74                   | 600        |          |          |
| PSYM         | YELLOW MIRROR 1.50 Resin                                       | INAR/B15      | 74                   | 600        |          |          |
| PSPM         | PURPLE MIRROR 1.50 Resin                                       | INAR/B15      | 74                   | 600        |          |          |
|              | DECINI MARTI MIDDOD                                            |               |                      |            |          |          |
| PMMB         | RESIN MATT MIRROR BLUE MATT MIRROR 1.50 Resin                  | C15           | 74                   | 600        |          |          |
| PMMG         | GOLD MATT MIRROR 1.50 Resin                                    | G15           | 74<br>74             |            |          |          |
| 1            |                                                                | B15           |                      | 600        |          |          |
| PMMN         | GREEN MATT MIRROR 1.50 Resin                                   | G15           | 74<br>74             | 600        |          |          |
| PMMP<br>PMMS | PURPLE MATT MIRROR 1.50 Resin<br>SILVER MATT MIRROR 1.50 Resin | B15<br>G15    | 74<br>74             | 600<br>600 |          |          |
| 1 1411413    | S.EVER HINTE MIRRIOR 1.50 RESIL                                | 3.5           | , ,                  | 500        |          |          |
|              | PLEASE NOTE THAT UNCUT PLAN                                    | O LENSES CAN  | BE ORDERED THRO      | UGH NLS    |          |          |

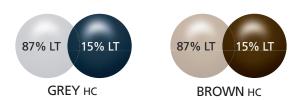
## Speciality Finished Plano Lenses

|                 | RESIN SPECIALITY                                 | Y TRANSMISSI         | ON)        | Per Lens | Per Lens |  |  |  |
|-----------------|--------------------------------------------------|----------------------|------------|----------|----------|--|--|--|
| LENS CODE       | Type Transmission Tint/Coating                   | Diameter x Thickness | Base Curve | UNCUT    | GLAZED   |  |  |  |
| MESH            | VISTA-MESH 1.56 90% LT RF                        | 70                   | 600        |          |          |  |  |  |
| BTS             | BLUTECH BT66 1.56 63% LT RF                      | 75                   | 400        |          |          |  |  |  |
| MULB            | MAXBLINK 1.58 74% LT RF                          | 76                   | 400        |          |          |  |  |  |
| BTP             | BLUTECH BT70 1.58 86% LT RF                      | 76                   | 400        |          |          |  |  |  |
| NCNC            | NEO CONTRAST A1 1.60                             | 75                   | 450        |          |          |  |  |  |
| NHNS            | NEO CONTRAST A2 1.60                             | 75                   | 450        |          |          |  |  |  |
| REZA-L          | READ-EZ VISUAL STRESS RANGE 1.50 (A to L Colours | 65                   | 400        |          |          |  |  |  |
| MEZA-L          | (MA to ML colours                                | s) 65                | 400        |          |          |  |  |  |
| RESIN OCCLUDERS |                                                  |                      |            |          |          |  |  |  |
| PFRO            | 1.50 Resin FROSTED                               | 65                   |            |          |          |  |  |  |
| POCC            | 1.50 Resin OCCLUDER BLACK                        | 65                   |            |          |          |  |  |  |

## Glass Plano & Speciality Finished Plano Lenses

|           | MINE                                              | <b>RAL GLAS</b> | S PLANO FINISH       | ED)        |                   |                    |
|-----------|---------------------------------------------------|-----------------|----------------------|------------|-------------------|--------------------|
| LENS CODE | Type Transmission Tint/Coating                    |                 | Diameter x Thickness | Base Curve | Per Lens<br>UNCUT | Per Lens<br>GLAZED |
|           | PLANO WHITE                                       |                 |                      |            |                   |                    |
| GS        | WHITE GLASS                                       |                 | 65 x 2.0mm           | 550        |                   |                    |
| GS        | WHITE GLASS                                       |                 | 70 x 2.0mm           | 550        |                   |                    |
| GS        | WHITE GLASS                                       |                 | 65 x 3.3mm           | 600        |                   |                    |
|           | PLANO TINT                                        |                 |                      |            |                   |                    |
| SLG GR    | 3 GREY 15 FIXED TINT                              | 15%             | 70 X 2.1mm           | 600        |                   |                    |
| SLG BR    | 3 BROWN 15 FIXED TINT                             | 15%             | 70 X 2.1mm           | 600        |                   |                    |
| SLG YE    | 3 YELLOW CONTRAST FIXED TINT                      | 82%             | 71 X 1.9mm           | 600        |                   |                    |
|           | GLASS PHOTOCHROMIC                                |                 |                      |            |                   |                    |
| SLG PE    | 3 SPRINT GREY PHOTOCHROMIC                        | 90% TO 8%       | 71 X 1.9mm           | 600        |                   |                    |
|           | GLASS POLARISED PHOTOCHR                          | OMIC            |                      |            |                   |                    |
| SLP CO    | 3 POLAR COPPER PHOTOCHROMIC                       |                 | 71 X 2.4mm           | 600        |                   |                    |
| SLP PE    | 3 POLAR GREY PHOTOCHROMIC                         | 24% TO 9%       | 71 X 2.4mm           | 600        |                   |                    |
|           |                                                   | VINERAL G       | GLASS WAFERS         |            |                   |                    |
| BIWA      | WHITE CROWN 30mm RD BIFOCAI<br>Adds +1.50 to 3.00 | L WAFER         | 66 x 1.6mm           | FLAT       |                   |                    |
|           |                                                   | GLASS (         | OCCLUDERS            |            |                   |                    |
| GFRO      | 3 GLASS FROSTED                                   |                 | 70                   |            |                   |                    |
|           | GLAS                                              | S SPECIAL       | ITY TRANSMISSI       | ON         |                   |                    |
| GXR       | X RAY FILTER RWB-46 1.76 87%                      |                 | 73 x 2.5mm           | 600        |                   |                    |
| GFC DI    | NEW DID 46%                                       |                 | 70 x 2.5mm           | 600        |                   |                    |
|           |                                                   |                 |                      |            |                   |                    |

Plano wafers priced as surfaced Rx power equivalent.


<sup>\*</sup>For exact stock range availability and volume (10 +) uncut pricing please refer to our NLS Finished Stock Lens Catalogue or see online - www.norville.co.uk

|           | RESIN SPECIALITY SINGLE VISION                                                                                                          |  |  |  |  |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| LENS CODE | LENS CODE                                                                                                                               |  |  |  |  |  |  |
| FREN      | FRESNEL PRESS ON <i>PRISM</i> LENSES 62mm                                                                                               |  |  |  |  |  |  |
|           | Prism Dioptres 1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00 10.00, 12.00, 15.00, 20.00, 25.00, 30.00, 35.00, 40.00              |  |  |  |  |  |  |
| FREP      | FRESNEL PRESS ON ASPHERIC <b>PLUS</b> LENSES 62mm                                                                                       |  |  |  |  |  |  |
|           | Power Dioptres<br>+0.50, +1.00, +1.50, +2.00, +2.50, +3.00, +3.50, +4.00, +5.00,<br>+6.00, +7.00, +8.00, +10.00, +12.00, +14.00, +16.00 |  |  |  |  |  |  |
| FREM      | FRESNEL PRESS ON ASPHERIC <i>MINUS</i> LENSES 62mm                                                                                      |  |  |  |  |  |  |
|           | Power Dioptres -1.00, -2.00, -3.00, -4.00, -5.00, -6.00, -7.00, -8.00, -9.00, -10.00, -11.00, -12.00, -13.00, -14.00                    |  |  |  |  |  |  |



# Reactolite® Resin Photochromic Availability Quick Guide





Availability indicated by overcoloured lens code

e.g. PSS+

Reactolite® can be provided at those prices listed on page 131.



Manufactured in Gloucester UK











# RESIN LENSES 1.50 INDEX

**NORLITE 1.50 RESIN** 

 $Reactolite^{\circ}$ 

**NuPolar** 

NUPOLAR infinite - NuPolar CHROMATIC

Transiti@ns<sup>®</sup>

Transitions GEN8

Transitions XTRActive

Transitions Vantage

Transiti@ns<sup>®</sup> **DRIVEWEAR**<sup>®</sup>

1.498

Index

58

**Abbe** 

1.3g/cm<sup>3</sup>

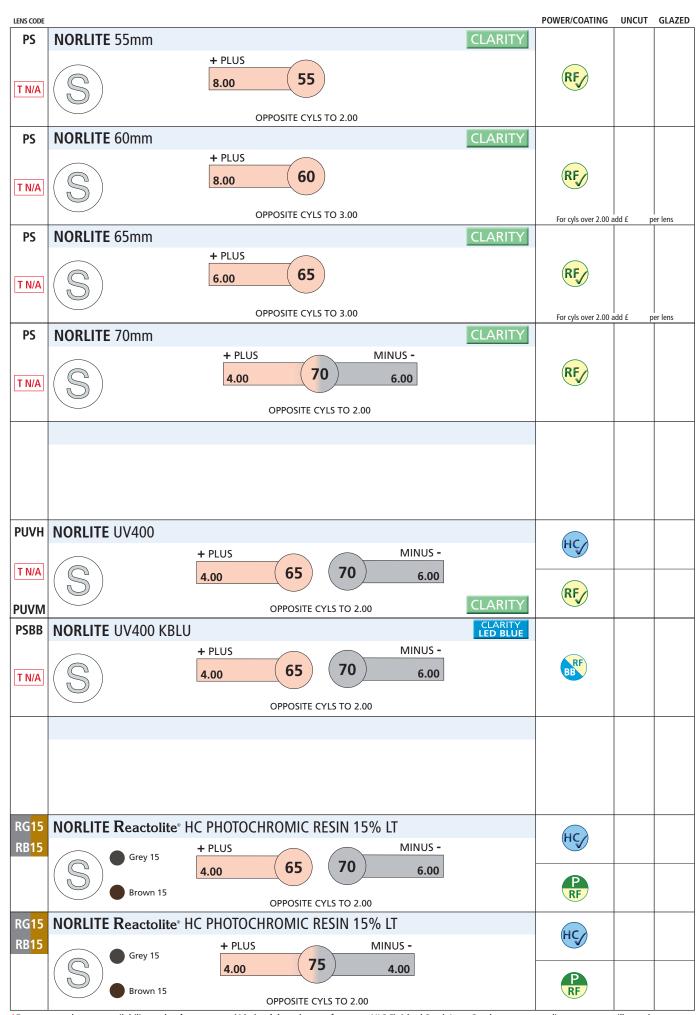
**Density** 

350nm

UV

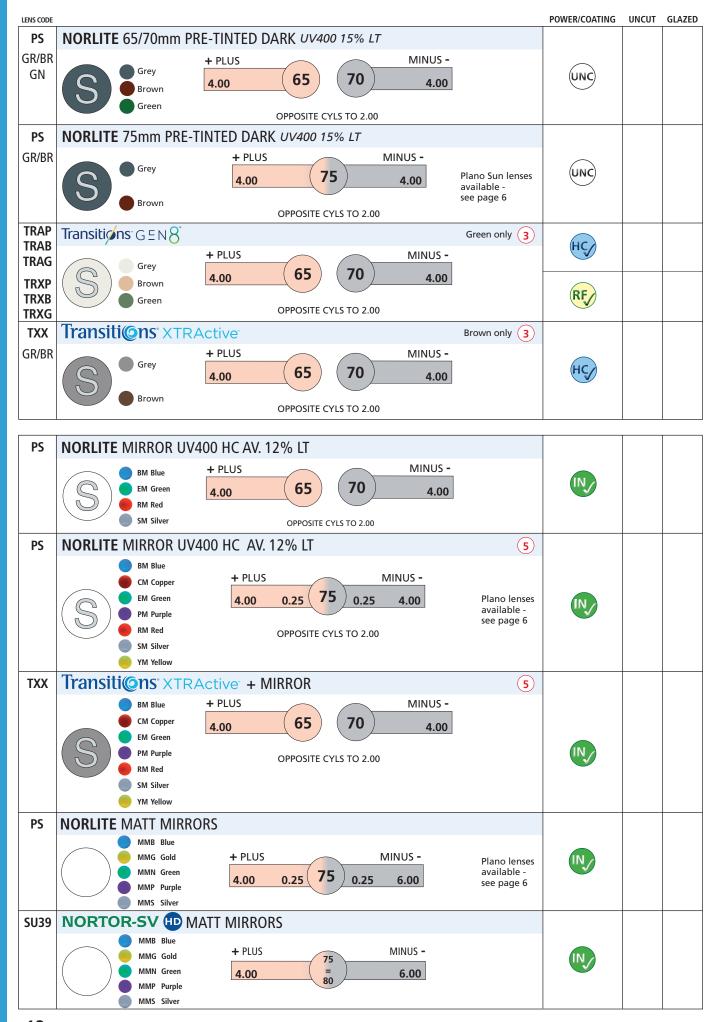
## 1.50

#### RESIN SINGLE VISION FINISHED STOCK



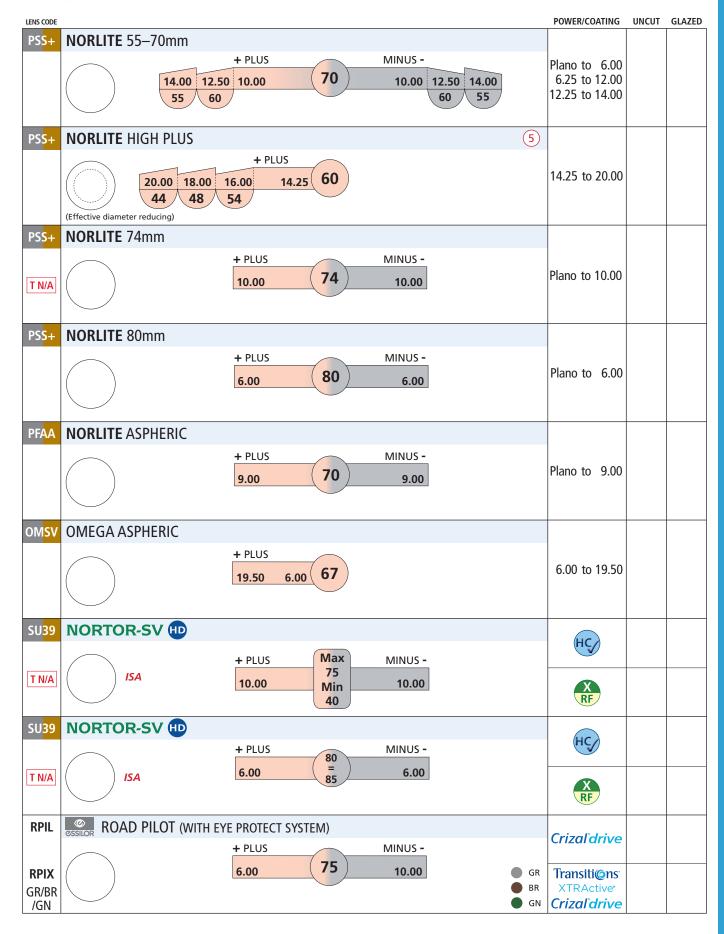

| LENS CODE |                         |                                                     | POWER/COATING U          | NCUT GLAZED |
|-----------|-------------------------|-----------------------------------------------------|--------------------------|-------------|
| PS        | NORLITE 50mm            | + PLUS                                              | UNC                      |             |
|           | (S)                     | 8.00 4.00 50  OPPOSITE CYLS TO 2.00                 | HC                       |             |
| PS        | NORLITE 55mm            | + PLUS                                              | UNC                      |             |
|           | S                       | 6.00 Plano 55  OPPOSITE CYLS TO 2.00                | HC                       |             |
| PS        | NORLITE 55mm            | + PLUS                                              | UNC                      |             |
|           | (S)                     | 8.00 6.25 55  OPPOSITE CYLS TO 2.00                 | HC                       |             |
| PS        | NORLITE 60mm            |                                                     | (UNC)                    |             |
|           | S                       | + PLUS 6.00 Plano 60                                | For cyls over 2.00 add   | E per lens  |
|           |                         | OPPOSITE CYLS TO 3.00                               | For cyls over 2.00 add : | E per lens  |
| PS        | NORLITE 60mm            |                                                     | (UNC)                    |             |
|           | S                       | + PLUS<br>8.00 6.25 <b>60</b>                       | For cyls over 2.00 add   | E per lens  |
|           |                         | OPPOSITE CYLS TO 3.00                               | For cyls over 2.00 add   | E per lens  |
| PS        | NORLITE 65mm            |                                                     | (UNC)                    |             |
|           | S                       | + PLUS MINUS - 6.00 65 6.00                         | For cyls over 2.00 add   |             |
| PS        | NORLITE 70mm            | OPPOSITE CYLS TO 4.00 CYLS OVER 3DC                 | For cyls over 2.00 add   | £ per lens  |
|           |                         | + PLUS MINUS - 6.00 6.00                            | (UNC)                    |             |
|           |                         | Note: HC to +4.50 sphere only OPPOSITE CYLS TO 2.00 | HC                       |             |
| PS        | NORLITE 75mm            |                                                     |                          |             |
|           | $\overline{\mathbb{S}}$ | + PLUS MINUS - 4.00 4.00                            | UNC                      |             |
|           |                         | OPPOSITE CYLS TO 2.00                               |                          |             |
|           |                         |                                                     |                          |             |
|           |                         |                                                     |                          |             |
|           |                         |                                                     |                          |             |
|           |                         |                                                     |                          |             |

<sup>\*</sup>For exact stock range availability and volume uncut (10+) pricing please refer to our NLS Finished Stock Lens Catalogue or see online - www.norville.co.uk




#### RESIN SINGLE VISION FINISHED STOCK




#### RESIN SINGLE VISION FINISHED STOCK



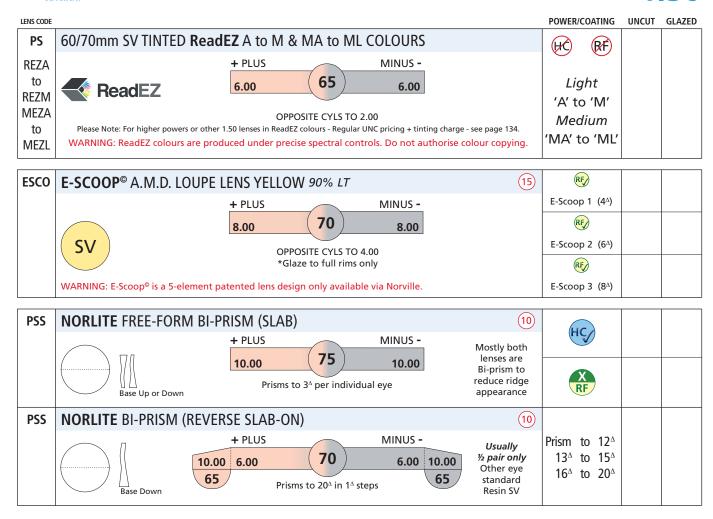




#### **RESIN SINGLE VISION SURFACED**



## 1.50


#### RESIN LENTICULAR PLUS & MINUS SINGLE VISION



| LENS CODE          |                                                                                                                                                                                                   | POWER/COATING                                                        | UNCUT | GLAZED |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------|--------|
| PA38               | NORLITE 38mm LENTICULAR                                                                                                                                                                           |                                                                      |       |        |
|                    | + PLUS  18.00 10.00 68                                                                                                                                                                            | 10.00 to 14.00<br>14.25 to 18.00                                     |       |        |
| PAL                | NORLITE 42mm LENTICULAR ASPHERIC                                                                                                                                                                  |                                                                      |       |        |
|                    | + PLUS<br>20.00 10.00 67                                                                                                                                                                          | 10.00 to 14.00<br>14.25 to 20.00                                     |       |        |
| PA34               | NORLITE 34mm LENTICULAR (10)                                                                                                                                                                      |                                                                      |       |        |
|                    | + PLUS  34mm button reducing Over 30.00 27mm (PA27) Over 40.00 20mm (PA20) Over 40.00 20mm (PA20)                                                                                                 | 10.00 to 14.00<br>14.25 to 22.00<br>22.25 to 34.00<br>34.25 to 48.00 |       |        |
| PA <mark>50</mark> | NORLITE 50mm LENTICULAR 10                                                                                                                                                                        |                                                                      |       |        |
|                    | + PLUS 15.00 6.00 70                                                                                                                                                                              | 6.00 to 9.75<br>10.00 to 15.00                                       |       |        |
| IGAH               | ASPHERIC HYPEROCULARS 49mm & 65mm 10                                                                                                                                                              |                                                                      |       |        |
| T N/A              | 49mm POWERS IN DIOPTRES 4x = +17.69 5x = +23.90 6x = +28.06 8x = +39.14 34mm button  49mm POWERS IN DIOPTRES 4x = +17.69 5x = +23.90 6x = +28.06 8x = +39.14 10x = +55.7012x = +71.36 34mm button | 4X 5X 6X 8X<br>10X 12X                                               |       |        |
| PSS-               | NORLITE BI-CONCAVE                                                                                                                                                                                |                                                                      |       |        |
|                    | -2.75<br>-4.50<br>-6.25<br>-8.25<br>-10.25<br>BASES MINUS -<br>65 5.00 11.50 20.00                                                                                                                | 5.00 to 9.75<br>10.00 to 14.00<br>14.25 to 20.00                     |       |        |
| RS <mark>L5</mark> | NORTOR-SV (ID) SUPER-LENTI (10)                                                                                                                                                                   |                                                                      |       |        |
|                    | MINUS - 65 10.00 18.00                                                                                                                                                                            | 10.00 to 14.00<br>14.25 to 18.00                                     |       |        |
| PL30               | NORLITE CUSTOM APERTURE LENTIC (10)                                                                                                                                                               |                                                                      |       |        |
|                    | Convex thickness reduction State required aperture  MINUS -  65 10.00 25.00                                                                                                                       | 10.00 to 14.00<br>14.25 to 25.00                                     |       |        |
| FT16               | NORLITE CUSTOM MYOPLET LENTIC 10                                                                                                                                                                  |                                                                      |       |        |
|                    | Plano flattening State required aperture  MINUS -  65  14.00  25.00                                                                                                                               | 14.00 to 25.00                                                       |       |        |
|                    |                                                                                                                                                                                                   |                                                                      |       |        |



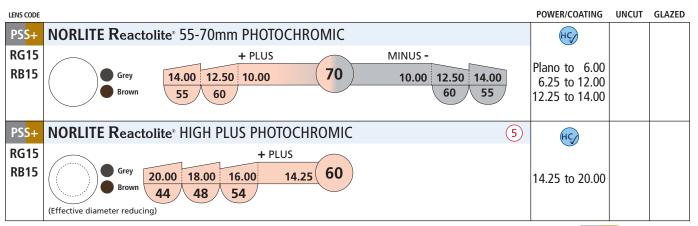
#### RESIN SPECIALIST SINGLE VISION



#### MYOPIA CONTROL\*

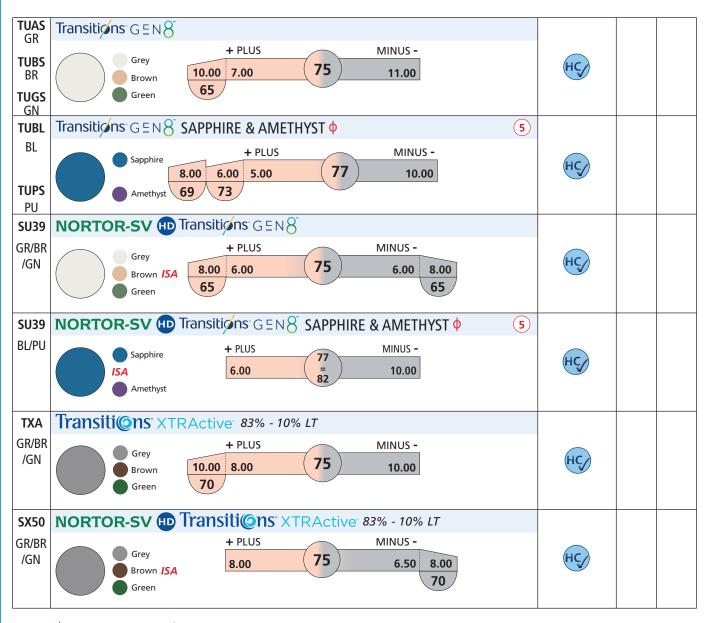


<sup>★</sup> Special Note: Norville recommend viewing our Myopia Control spectacle lens booklet before prescribing.


With few published clinical outcomes for Myopia Control spectacle lenses, The Norville Group can take no responsibility for individual Px results. Optometrists are recommended to follow College of Optometrists prescribing guidelines for Myopia Control spectacle lenses.

Similarly Dispensers, the A.B.D.O. Myopia management position paper.

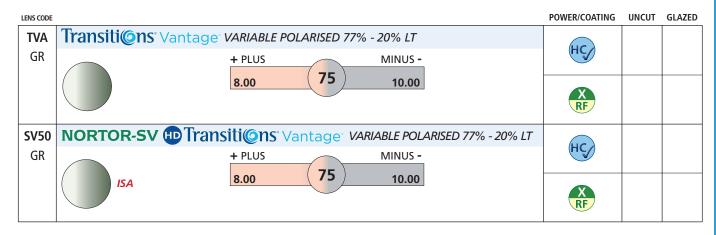
# **INDEX**


#### RESIN Reactolite® SINGLE VISION

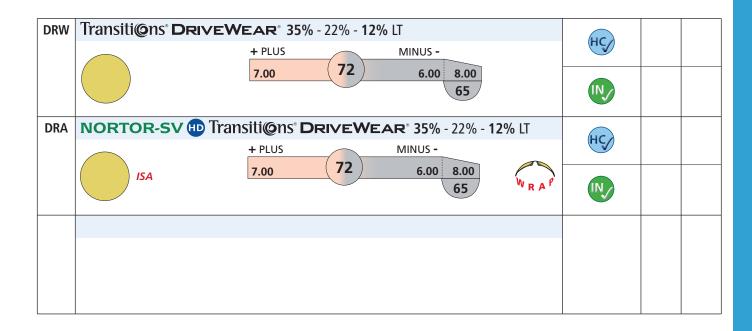




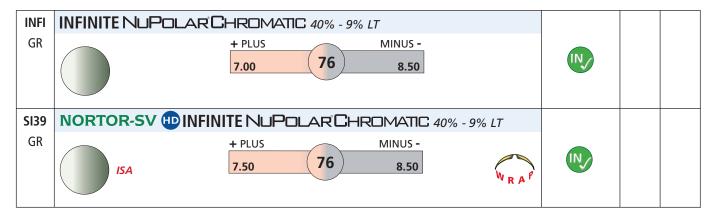
For other Reactolite lens options please see separate listing or look for headers colour marked as example: PSS+


## RESIN Transitions




◆ Please Note: Transitiøns in new Sapphire & Amethyst colours is a semi-finished product and is available in any  $\bigoplus$  Rx product or multifocal marked with the G  $\subseteq$  N  $\bigotimes$  logo.

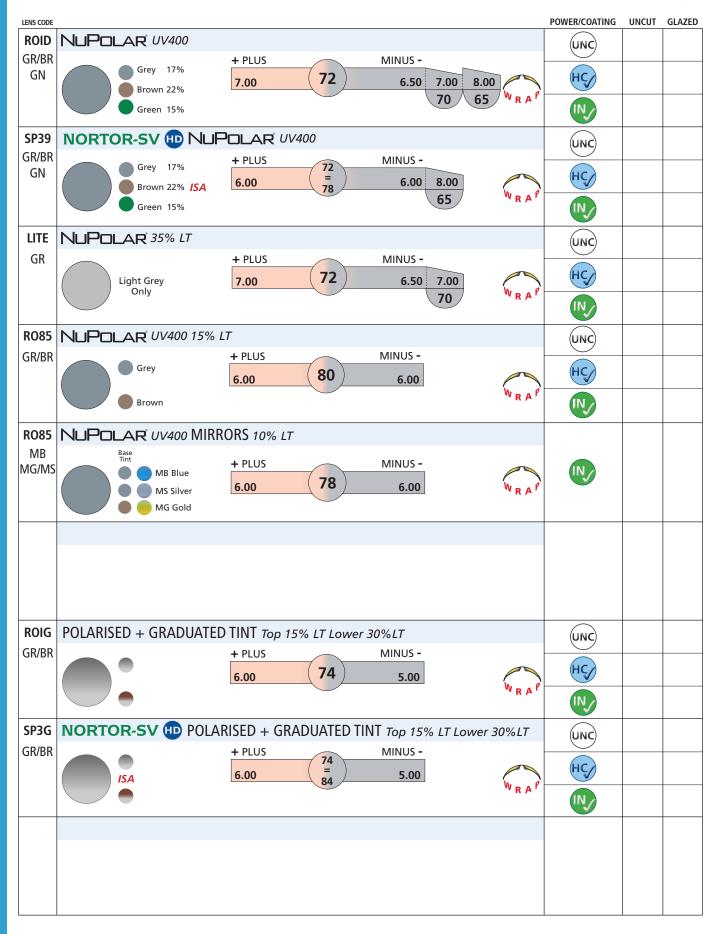



#### RESIN VARIABLE POLARISED SINGLE VISION

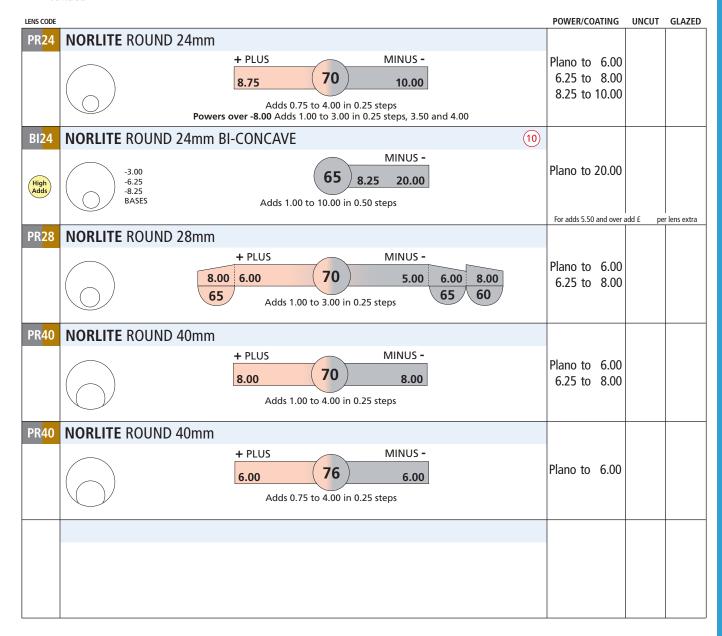


#### RESIN **DRIVEWEAR** SINGLE VISION

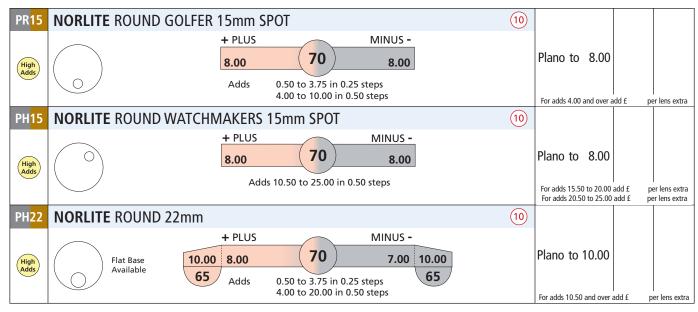



#### RESIN PHOTOCHROMIC NUPOLAR




Special Note: NLPDLAR 35% & INFINITE can be overtinted to most darker colours <35% LT e.g. Blue, Dark Pink

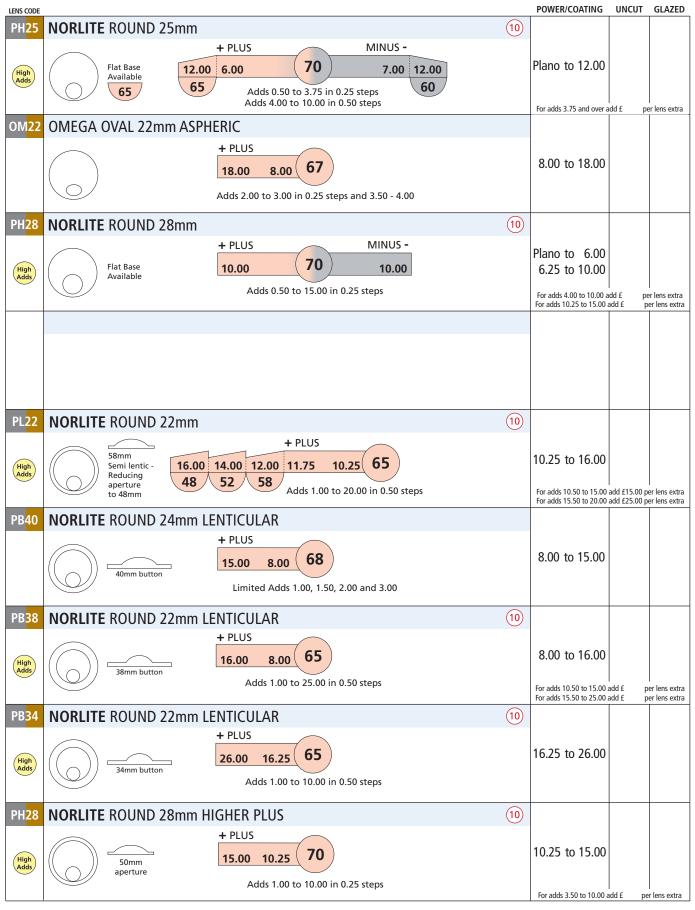
#### **RESIN SINGLE VISION POLARISED**





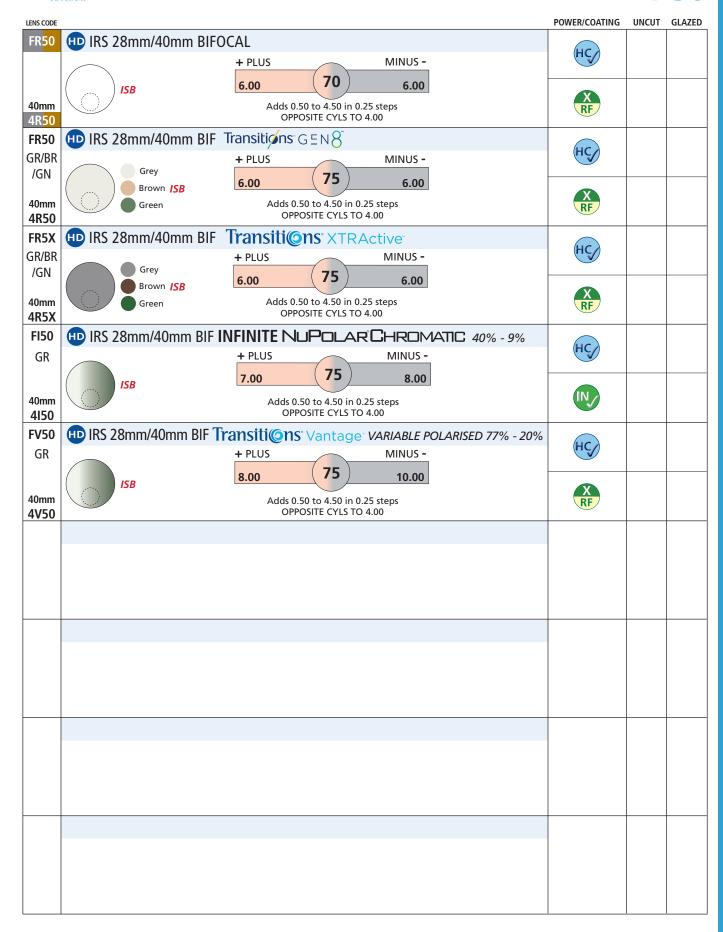

#### **RESIN BIFOCALS**




#### RESIN **SPECIALIST ROUND** BIFOCALS



# 1.50


#### RESIN HIGHER POWERS ROUND BIFOCALS





 $\hbox{Overcoloured background } \hbox{indicates } \hbox{\bf Reactolite} \hbox{$^\circ$ availability quick guide or see separate catalogue }$ 





# RESIN HD HSA 28mm RD MULTIFOCAL

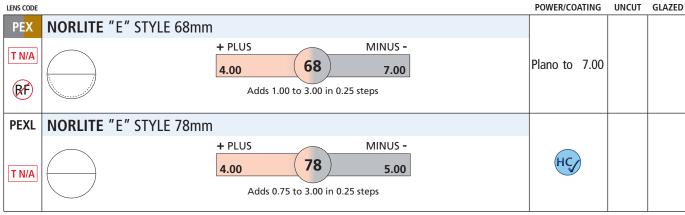


| LENS CODE          |                         |                                                                | POWER/COATING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UNCUT | GLAZED |
|--------------------|-------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|
| QU <mark>39</mark> | HD HSA 28mm RD MULTIF   | OCAL                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
|                    |                         | + PLUS MINUS -                                                 | HC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |
|                    |                         | 8.00 (70)                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
|                    | ISM                     |                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |        |
|                    | 17mm                    | Adds 0.50 to 4.50 in 0.25 or 0.10 steps OPPOSITE CYLS TO 4.00  | RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |
| QU39               | HSA 28mm RD MULTIF      | OCAL Transitions GENS                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
| GR/BR              | HISA ZOMMI KO WICEM     | + PLUS MINUS -                                                 | HC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |
| /GN                | Grey                    | 75                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
|                    | Brown ISM               | 6.00 (75) 6.00                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
|                    | Green                   | Adds 0.50 to 4.50 in 0.25 or 0.10 steps OPPOSITE CYLS TO 4.00  | RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |
|                    | 17mm                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
| QX39               | HSA 28mm RD MULTIF      | OCAL Transitions XTRActive                                     | HCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |        |
| GR/BR              | Grey                    | + PLUS MINUS -                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
| /GN                | Brown ISM               | 6.00 (75)                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |        |
|                    | Green                   | Adds 0.50 to 4.50 in 0.25 or 0.10 steps                        | X<br>RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |        |
|                    | 17mm                    | OPPOSITE CYLS TO 4.00                                          | NF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |
| QUDR               | HD HSA 28mm RD MULTIFO  | CAL Transiti@ns <sup>®</sup> <b>DRIVEWEAR</b> ®                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
|                    |                         | + PLUS MINUS -                                                 | HC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |
|                    |                         | 6.00 (72)                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
|                    | ISM                     | 0.00                                                           | IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |
|                    | 17mm                    | Adds 0.50 to 4.50 in 0.25 or 0.10 steps  OPPOSITE CYLS TO 4.00 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
| QP39               |                         | OCAL NUPOLAR POLARISED UV400 15% LT                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |        |
| GR/BR              | 113A ZOIIIII NO MOLIII  |                                                                | HC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |
| /GN                | Grey                    | + PLUS MINUS -                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
| 7011               | Brown ISM               | 6.00                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
|                    | Green                   | Adds 0.50 to 4.50 in 0.25 or 0.10 steps                        | IN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |        |
|                    | 17mm                    | OPPOSITE CYLS TO 4.00                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
| Q139               | HD HSA 28mm RD MULTI IN | FINITE NUPOLAR CHROMATIC 40% - 9% LT                           | (HC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |        |
| GR                 |                         | + PLUS MINUS -                                                 | The state of the s |       |        |
|                    | ISM                     | 7.00 (75) 8.00                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
|                    | 1510                    | Adds 0.50 to 4.50 in 0.25 or 0.10 steps                        | IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |
|                    | 17mm                    | OPPOSITE CYLS TO 4.00                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
|                    |                         |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
|                    |                         |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
|                    |                         |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
|                    |                         |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
|                    |                         |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
|                    |                         |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
|                    |                         |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
|                    |                         |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
|                    |                         |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
|                    |                         |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
|                    |                         |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
|                    |                         |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
|                    |                         |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
|                    |                         |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
|                    |                         |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
|                    |                         |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |
| $\overline{}$      |                         |                                                                | I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |        |

## **RESIN FLAT TOP BIFOCALS**

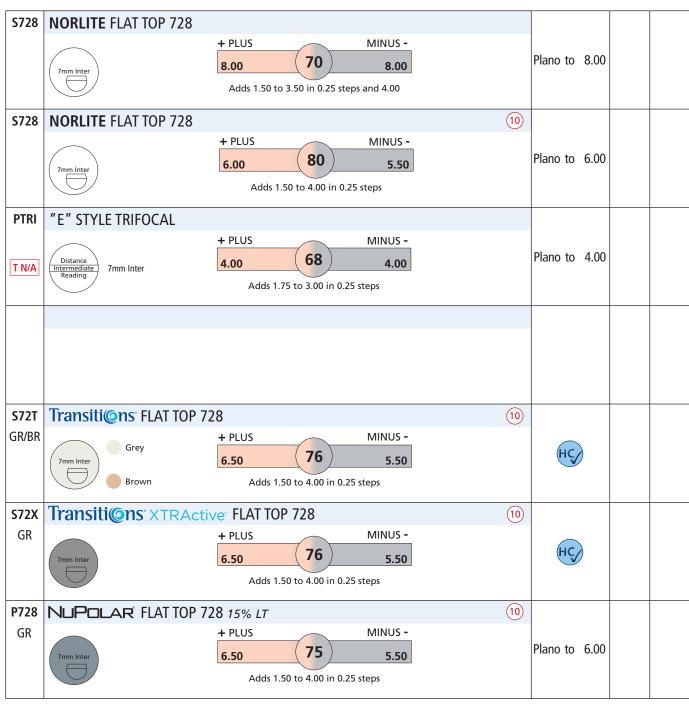


| LENS CODE                     |                                                                                                                           | POWER/COATING                                  | UNCUT | GLAZED |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------|--------|
| S28A                          | NORLITE FLAT TOP 28mm  + PLUS 9.00 Adds 0.50 to 4.00 in 0.25 steps                                                        | Plano to 6.00<br>6.25 to 8.00<br>8.25 to 10.00 |       |        |
| S28A                          | * PLUS MINUS - 7.00 75 8.00  Adds 0.75 to 4.00 in 0.25 steps                                                              | Plano to 6.00<br>6.25 to 8.00                  |       |        |
| S28A                          | NORLITE FLAT TOP 28mm  + PLUS 6.00 80 8.00 Adds 0.75 to 4.00 in 0.25 steps                                                | Plano to 8.00                                  |       |        |
| S28Y  High Adds               | **PLUS MINUS - 4.00 80 5.50  PLUS POWERS - Adds 4.50 to 6.00 in 0.50 steps MINUS POWERS - Adds 4.50 to 8.00 in 0.50 steps | Plano to 5.50                                  |       |        |
| <b>T28P</b> GR <b>T28B</b> BR | Transitions: G = N 8 FLAT TOP 28mm  + PLUS MINUS -  7.00 6.00 75 8.00 10.00  Adds 1.00 to 3.00 in 0.25 steps              | Plano to 6.00 6.25 to 10.00                    |       |        |
| GR High Adds  T28B BR         | Transitions: G = N 8 FLAT TOP 28mm  + PLUS  6.50  Adds 3.50 to 5.00 in 0.50 steps                                         | HC                                             |       |        |
| S28X<br>GR/BR                 | Transitions XTRActive FLAT TOP 28mm 83% - 10% LT  + PLUS MINUS -  7.00 76 8.00  Adds 1.00 to 3.00 in 0.25 steps           | HC                                             |       |        |
| PODS<br>GR/BR                 | HUPOLAR FLAT TOP 28mm 15% LT  + PLUS MINUS -  7.00 76 6.75 8.00  Adds 0.75 to 4.00 in 0.25 steps                          | Plano to 8.00                                  |       |        |
| DR28                          | Transiti@ns° DRIVEWEAR° FLAT TOP 28mm 35% - 22% - 12% LT  + PLUS 6.00 74 7.50                                             | HC                                             |       |        |
|                               | Adds 1.00 to 3.00 in 0.25 steps                                                                                           |                                                |       |        |


#### RESIN FLAT & CURVE TOP BIFOCALS



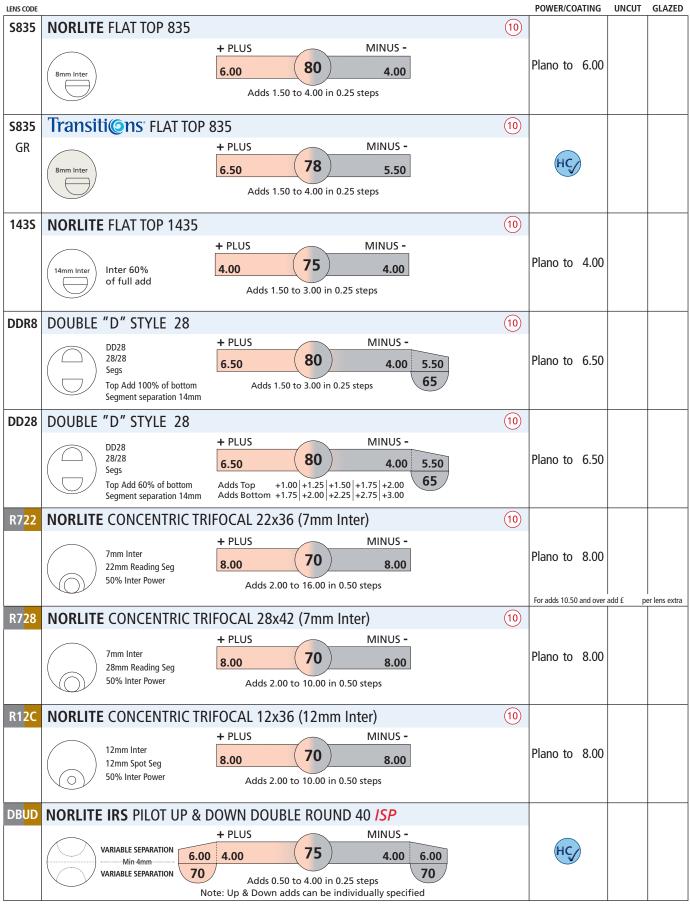
| LENS CODE         |                                                                                                                            |    | POWER/COATING                 | UNCUT   | GLAZED        |
|-------------------|----------------------------------------------------------------------------------------------------------------------------|----|-------------------------------|---------|---------------|
| S35A              | NORLITE FLAT TOP 35mm                                                                                                      |    |                               |         |               |
|                   | + PLUS MINUS -  6.00 70 7.50  Adds 1.00 to 3.00 in 0.25 steps                                                              |    | Plano to 7.50                 |         |               |
| S35A              | FLAT TOP 35mm                                                                                                              |    |                               |         |               |
|                   | + PLUS MINUS - 7.00 5.00 76 7.00 Adds 0.75 to 4.00 in 0.25 steps                                                           |    | Plano to 7.00                 |         |               |
| S35Y              | NORLITE FLAT TOP 35mm                                                                                                      | 10 |                               |         |               |
| High<br>Adds      | + PLUS MINUS -  4.00 80 5.50  PLUS POWERS - Adds 4.50 to 6.00 in 0.50 steps MINUS POWERS - Adds 4.50 to 8.00 in 0.50 steps |    | Plano to 5.50                 |         |               |
| S35P              | Transiti@ns <sup>-</sup> FLAT TOP 35mm                                                                                     |    |                               |         |               |
| GR<br><b>S35B</b> | + PLUS MINUS -  6.50 78 5.00  Brown Adds 0.75 to 4.00 in 0.25 steps                                                        |    | HC                            |         |               |
| BR                |                                                                                                                            |    |                               |         |               |
| PS35              | 1 101 3511111 1570 E1                                                                                                      | 10 |                               |         |               |
| GR                | + PLUS MINUS - 7.00 Adds 0.75 to 4.00 in 0.25 steps                                                                        |    | Plano to 7.00                 |         |               |
| S45A              | * PLUS MINUS - 6.50 80 4.50  Adds 0.75 to 3.00 in 0.25 steps                                                               |    | Plano to 6.50                 |         |               |
| S45A              | Transiti@ns FLAT TOP 45mm                                                                                                  |    |                               |         |               |
| GR/BR             | + PLUS MINUS -  6.50 80 4.50  Brown Adds 0.75 to 3.00 in 0.25 steps                                                        |    | HC                            |         |               |
| C28A              | NORLITE CURVE TOP 28mm                                                                                                     |    |                               |         |               |
|                   | + PLUS MINUS -  7.00 70 8.00  Adds 1.00 to 3.50 in 0.25 steps                                                              |    | Plano to 6.00<br>6.25 to 8.00 |         |               |
| C28P              | Transitions GEN8 CURVE TOP 28mm                                                                                            | 5  |                               |         |               |
| GR                | + PLUS MINUS - 7.00 8.00                                                                                                   |    | HC                            |         |               |
| C28B<br>BR        | Adds 1.00 to 3.50 in 0.25 steps                                                                                            |    | For adds 3.25 and over a      | dd £ pe | er lens extra |



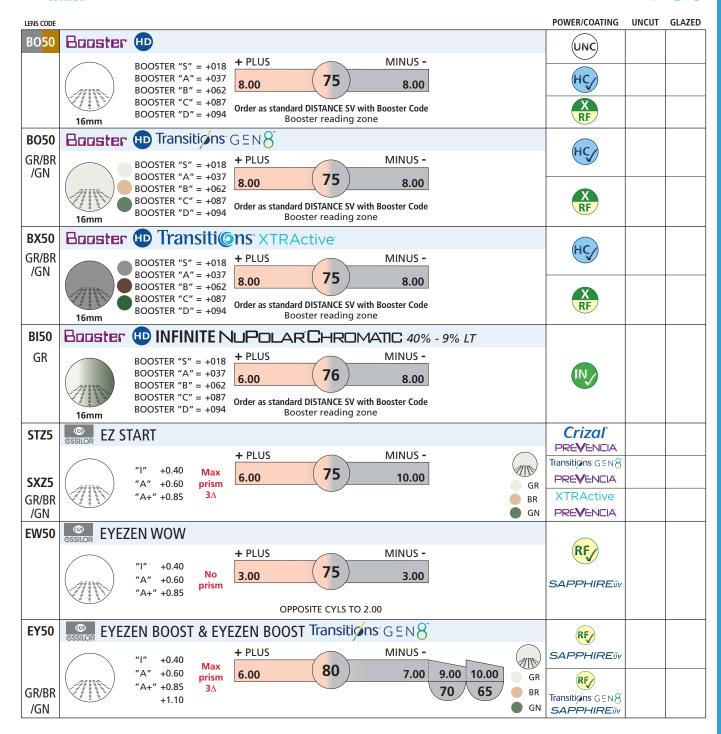

#### **RESIN BIFOCALS**



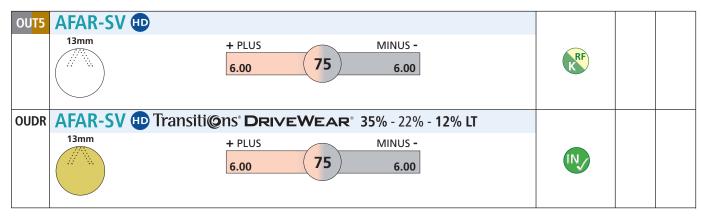
Please note: For tinted E style please specify n=1.67 page 101


#### **RESIN TRIFOCALS**



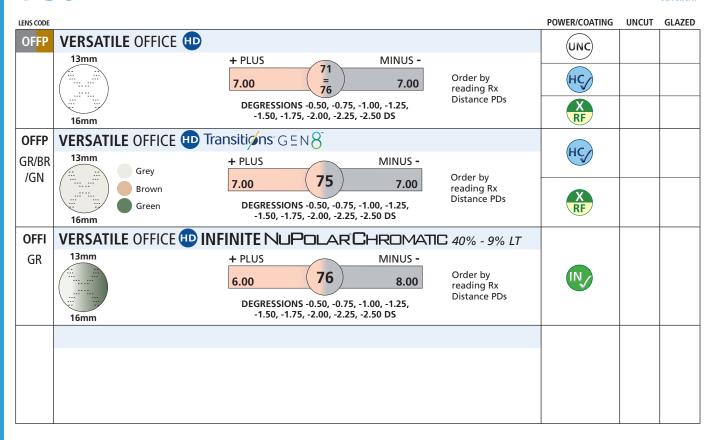

1.50

#### RESIN TRIFOCALS



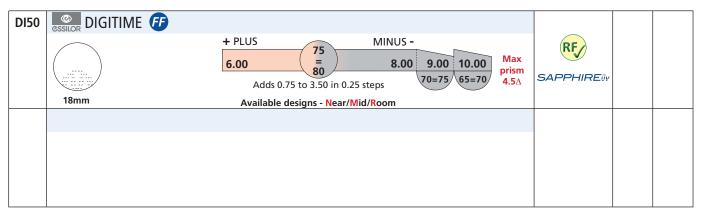



Overcoloured background indicates **Reactolite**® availability quick guide or see separate catalogue



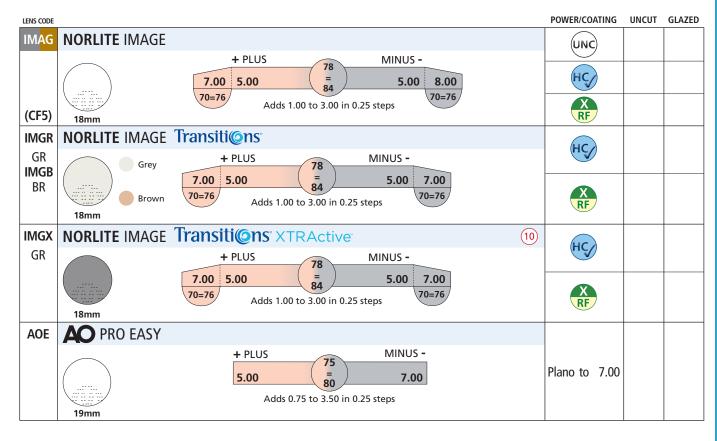

## RESIN HD DISTANCE MYOPIA ZONE



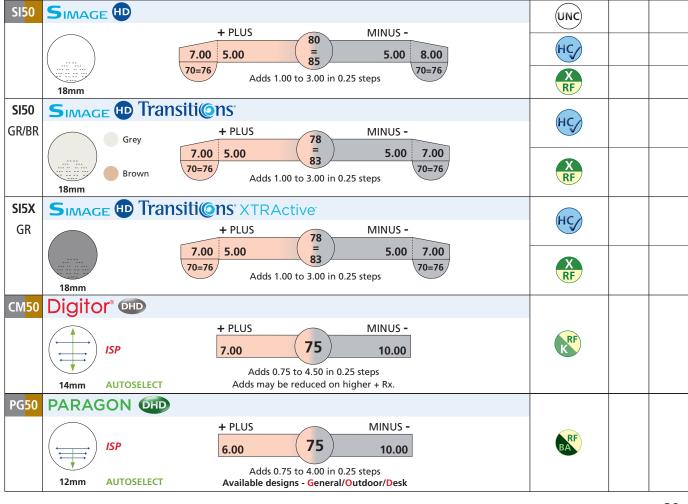

#### RESIN **DEGRESSIVES** (ENHANCED NEAR VISION)






#### RESIN **OCCUPATIONAL** PROGRESSIVES








#### **RESIN PROGRESSIVES**



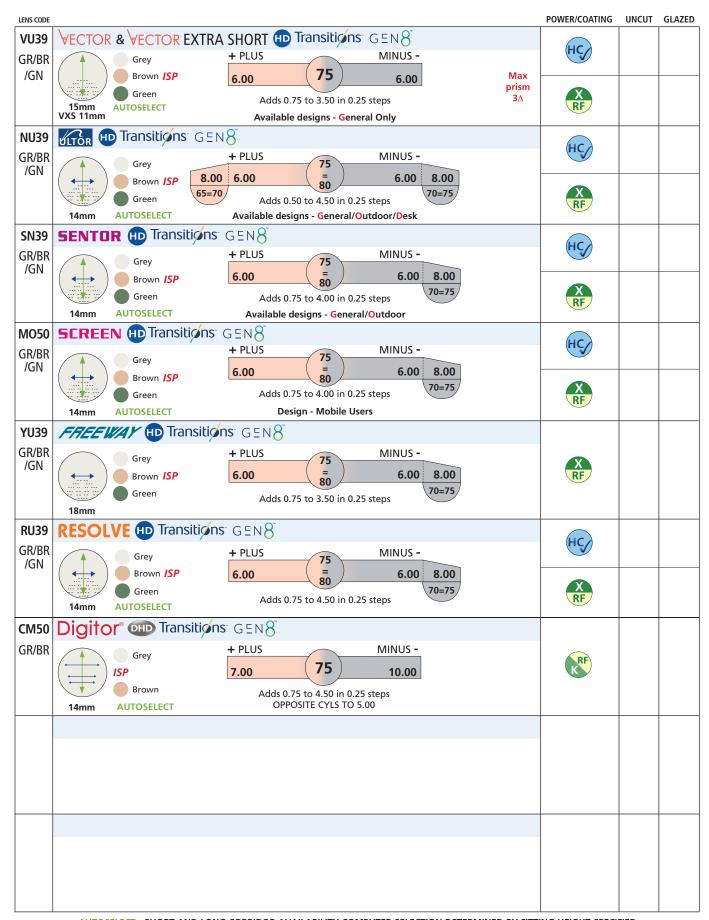
## RESIN HD PROGRESSIVES







| LENS CODE          |               |                       |                  |                              |                         |              | POWER/COATING | UNCUT | GLAZED |
|--------------------|---------------|-----------------------|------------------|------------------------------|-------------------------|--------------|---------------|-------|--------|
| VU39               | <b>VECTOR</b> | & <b>∀ECTOR</b> EXTRA | SHORT 🕕          |                              |                         |              | (UNC)         |       |        |
|                    | 1             |                       | + PLUS           |                              | MINUS -                 |              |               |       |        |
| T20%               | ()            | ISP                   | 6.00             | 75                           | 6.00                    | Max<br>prism | HC            |       |        |
|                    | 15mm          | AUTOSELECT            |                  | to 3.50 in 0.25              |                         | 3∆           | X             |       |        |
| NU <mark>39</mark> | VXS 11mm      | <u> </u>              | Available de     | esigns - <mark>G</mark> ener | al only                 |              |               |       |        |
| MODE               | ULTOR TO      |                       | + PLUS           |                              | MINUS -                 |              | (UNC)         |       |        |
|                    |               | ISP                   | 8.00             | 75                           | 8.00                    |              | HC            |       |        |
|                    |               | 131                   |                  | 80<br>to 4.50 in 0.25        |                         |              |               |       |        |
|                    | 14mm          | AUTOSELECT            | Available design | ıs - General/O               | utdoor/Desk             |              | RF            |       |        |
| SN39               | SENTO         | R 🕕                   |                  |                              |                         |              | (UNC)         |       |        |
|                    | <b>A</b>      |                       | + PLUS           | 75                           | MINUS -                 |              |               |       |        |
|                    |               | ISP                   | 8.00             | 80                           | 8.00                    |              | HC            |       |        |
|                    |               |                       |                  | to 4.00 in 0.25              |                         |              | X             |       |        |
| MOFO               | 14mm          | AUTOSELECT            | Available desi   | igns - <mark>G</mark> eneral | / <mark>O</mark> utdoor |              | Nr.           |       |        |
| MO <mark>50</mark> | <b>SCREE</b>  | N HD                  | + PLUS           |                              | MINUS -                 |              | HC            |       |        |
|                    |               | 160                   | 8.00             | 75 =                         | 8.00                    |              |               |       |        |
|                    |               | ISP                   |                  | 80<br>to 4.00 in 0.25        |                         |              | X             |       |        |
|                    | 14mm          | AUTOSELECT            |                  | ı - Mobile Use               |                         |              | RF            |       |        |
| YW39               | FREEW         | VAY IID               |                  |                              |                         |              |               |       |        |
|                    |               |                       | + PLUS           | 75                           | MINUS -                 |              |               |       |        |
|                    |               | ISP                   | 6.00             | = 80                         | 6.00                    |              | RF            |       |        |
|                    |               |                       | Adds 0.75 1      | to 3.50 in 0.25              | steps                   |              |               |       |        |
| OCTE               | 18mm          | DICTANICE NAVOD       | ΙΛ               |                              |                         |              |               |       |        |
| OS <mark>T5</mark> | 13mm          | DISTANCE MYOP         |                  |                              | NAINII IC               |              |               |       |        |
|                    |               |                       | + PLUS           | 75                           | MINUS -                 |              | RF            |       |        |
|                    |               | ISP                   | 6.00             |                              | 6.00                    |              |               |       |        |
|                    | 18mm          |                       | Adds 0.50        | to 4.50 in 0.25              | 5 steps                 |              |               |       |        |
| RU39               | RESOL         | VE 🕕                  |                  |                              |                         |              | (UNC)         |       |        |
|                    | <b>A</b>      |                       | + PLUS           | 75                           | MINUS -                 |              |               |       |        |
|                    |               | ISP                   | 6.00             | 80                           | 6.00                    |              | HC            |       |        |
|                    | 44            | AUTOCELECT            | Adds 0.75 t      | to 4.50 in 0.25              | steps                   |              | X             |       |        |
| MU <mark>50</mark> | 14mm          | PAL HD                |                  |                              |                         |              |               |       |        |
| IVIO               | MONO          | PAL                   | + PLUS           |                              | MINUS -                 |              | (UNC)         |       |        |
|                    |               | ISP                   | 6.00             | 75                           | 6.00                    |              | HC            |       |        |
|                    |               |                       |                  | 80 - 0 3E                    |                         |              |               |       |        |
|                    | 18mm          |                       | Adds 0.75 t      | to 3.50 in 0.25              | steps                   |              | RF            |       |        |
|                    |               |                       |                  |                              |                         |              |               |       |        |
|                    |               |                       |                  |                              |                         |              |               |       |        |
|                    |               |                       |                  |                              |                         |              |               |       |        |
|                    |               |                       |                  |                              |                         |              |               |       |        |
| 1                  |               |                       |                  |                              |                         |              | 1             | l     | I      |


AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Variable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.



## RESIN HD PROGRESSIVES Transitions GEN8

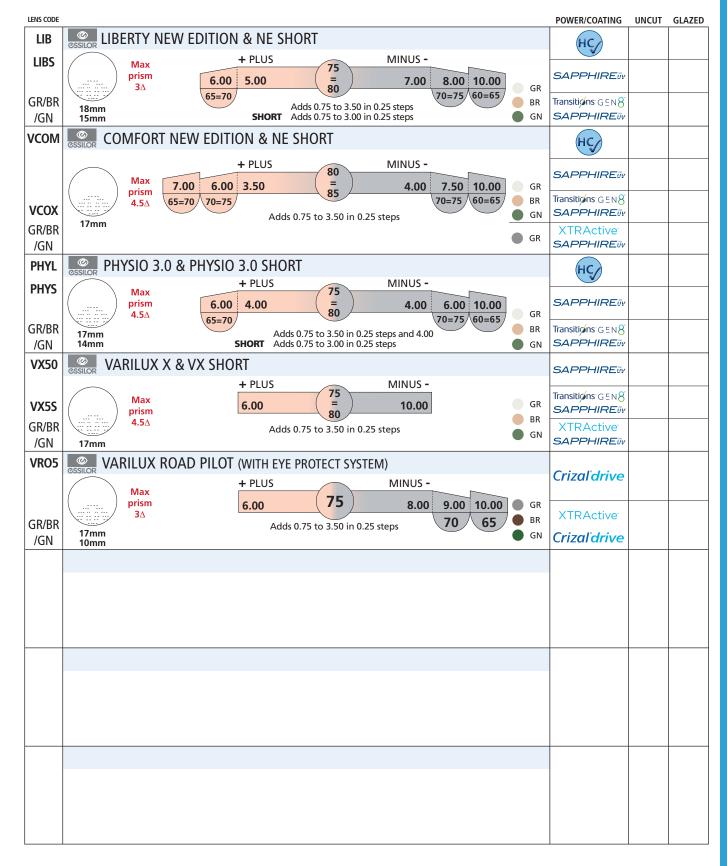




AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Wariable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.

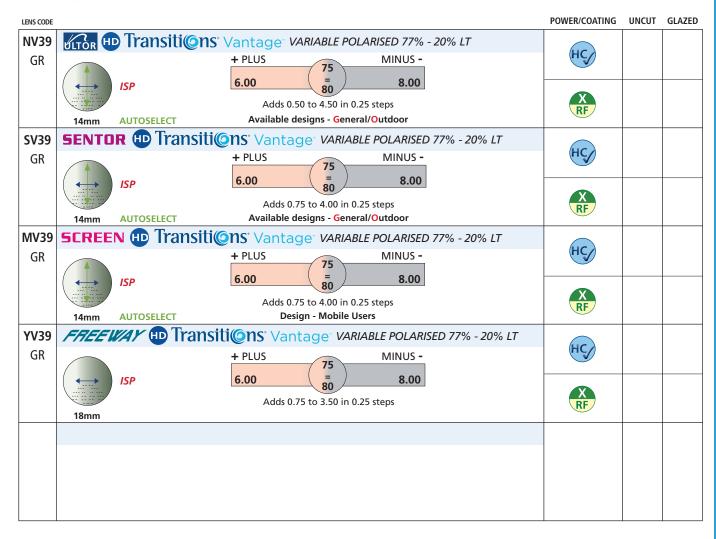
## RESIN HD PROGRESSIVES Transitions



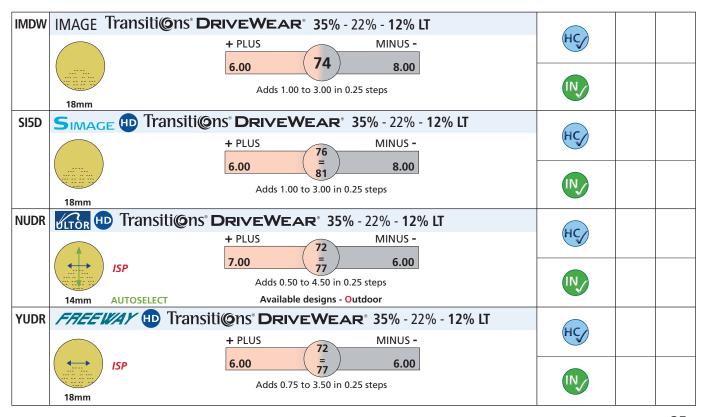

| LENS CODE    |                                                                        | POWER/COATING | UNCUT | GLAZED |
|--------------|------------------------------------------------------------------------|---------------|-------|--------|
| NX39         | Transitions XTRActive                                                  | l (uc)        |       |        |
| GR/BR        | + PLUS MINUS -                                                         | l little      |       |        |
| /GN          | Brown ISP 8.00 6.00 = 6.00 8.00                                        |               |       |        |
|              | Green Adds 0.50 to 4.50 in 0.25 steps                                  | RF            |       |        |
|              | 14mm AUTOSELECT Available designs - General/Outdoor/Desk               |               |       |        |
| SN3X         | SENTOR ID Transitions XTRActive + PLUS MINUS -                         | HC            |       |        |
| GR/BR<br>/GN | Grey 75                                                                |               |       |        |
| ,            | 80 0.00 0.00 70=75                                                     | X             |       |        |
|              | 14mm AUTOSELECT Available designs - General/Outdoor                    | RF            |       |        |
| МОЗХ         | SCREEN HD Transitions XTRActive                                        |               |       |        |
| GR/BR        | + PLUS MINUS -                                                         | HC            |       |        |
| /GN          | Grey 6.00 8.00                                                         |               |       |        |
|              | Brown <i>ISP</i> Green  Adds 0.75 to 4.00 in 0.25 steps                | X             |       |        |
|              | 14mm AUTOSELECT Design - Mobile Users                                  | RF            |       |        |
| YX39         | FREEWAY Transitions XTRActive                                          |               |       |        |
| GR/BR        | + PLUS MINUS -                                                         |               |       |        |
| /GN          | Provin ISB = 6.00 8.00                                                 | RF            |       |        |
|              | Green Adds 0.75 to 3.50 in 0.25 steps                                  |               |       |        |
|              | 18mm                                                                   |               |       |        |
| RX39         | RESOLVE Transitions XTRActive                                          | HC            |       |        |
| GR/BR        | Grey + PLUS MINUS -                                                    |               |       |        |
| /GN          | Brown <i>ISP</i> = 6.00 8.00                                           |               |       |        |
|              | Adds 0.75 to 4.50 in 0.25 steps                                        | RF            |       |        |
| CLAEV        | 14mm AUTOSELECT Automobile 150 m 5125 steps                            |               |       |        |
| CM5X         | Digitor  Transitions XTRActive                                         |               |       |        |
| GR/BR        | + PLUS MINUS -                                                         | RF            |       |        |
|              | 7.00 75 10.00                                                          | K             |       |        |
|              | Adds 0.75 to 4.50 in 0.25 steps  14mm AUTOSELECT OPPOSITE CYLS TO 5.00 |               |       |        |
|              | 14IIIII AOTOSEECI                                                      |               |       |        |
|              |                                                                        |               |       |        |
|              |                                                                        |               |       |        |
|              |                                                                        |               |       |        |
|              |                                                                        |               |       |        |
|              |                                                                        |               |       |        |
|              |                                                                        |               |       |        |
|              |                                                                        |               |       |        |
|              |                                                                        |               |       |        |
|              |                                                                        |               |       |        |
|              |                                                                        |               |       |        |
|              |                                                                        |               |       |        |
|              |                                                                        |               |       |        |
|              |                                                                        |               |       |        |
|              |                                                                        |               |       |        |

AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Variable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.








|                    |                                                                                                                  |                     | POWER/COATING            | UNCUT  | GLAZED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------|------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HOYA LIFESTYLE 3   |                                                                                                                  |                     | HC                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 75                                                                                                               |                     | S H-V                    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 0.00                                                                                                             | GR                  |                          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14mm               | Available designs - Urban/Indoor/Outdoor                                                                         | BR                  | SENSITY •                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HOYA BALANSIS      |                                                                                                                  |                     | HC                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | + PLUS MINUS -                                                                                                   |                     |                          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ( )                | 0.00                                                                                                             |                     | RF                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14mm               | Adds 0.75 to 3.50 in 0.25 steps                                                                                  | GR BR               | SENSITY •                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HOYA DAYNAMIC      |                                                                                                                  |                     | HC                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | + PLUS MINUS -                                                                                                   |                     |                          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (                  | 6.00 (75) 8.00                                                                                                   | GP.                 | SENSITY (1) (HC)         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14mm               | Adds 0.75 to 3.50 in 0.25 steps                                                                                  | BR                  | SENSITY () (HY)          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                                                                                                  |                     | <del></del>              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                                                                                                  |                     |                          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                                                                                                  |                     |                          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                                                                                                  |                     |                          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CETIZO CVNEDOV V   |                                                                                                                  | 10                  | _                        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SEINO STINERUT A   | + PLLIS MINUS -                                                                                                  | (10)                | RF                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.50               |                                                                                                                  |                     |                          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 70                 | Adds 0.50 to 3.50 in 0.25 steps                                                                                  | GR                  | Transiti@ns              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15mm               | OPPOSITE CYLS TO 4.00                                                                                            |                     |                          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SEIKO EMBLEM       | . 20115                                                                                                          | (10)                | RF                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                                                                                                  |                     |                          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                                                                                                  | GR                  | Transiti@ns              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15mm               | Adds 0.50 to 3.50 in 0.25 steps OPPOSITE CYLS TO 4.00                                                            | ● BR                | Trunside 113             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SEIKO PRIME        |                                                                                                                  | 10                  | (DE                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | + PLUS MINUS -                                                                                                   |                     | RF                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                                                                                                  |                     |                          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 4.00 75 7.50                                                                                                     | GR                  | T                        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.50 6.00<br>65 70 | Adds 0.50 to 3.50 in 0.25 steps OPPOSITE CYLS TO 4.00                                                            | GR<br>BR            | Transiti@ns              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 65 70              | Adds 0.50 to 3.50 in 0.25 steps                                                                                  |                     | Transiti@ns <sup>-</sup> |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 65 70              | Adds 0.50 to 3.50 in 0.25 steps                                                                                  |                     | Transiti@ns <sup>-</sup> |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 65 70              | Adds 0.50 to 3.50 in 0.25 steps                                                                                  |                     | Transiti@ns              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 65 70              | Adds 0.50 to 3.50 in 0.25 steps                                                                                  |                     | Transiti@ns              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 65 70              | Adds 0.50 to 3.50 in 0.25 steps                                                                                  |                     | Transiti@ns <sup>-</sup> |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 65 70              | Adds 0.50 to 3.50 in 0.25 steps                                                                                  |                     | Transiti@ns              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 65 70              | Adds 0.50 to 3.50 in 0.25 steps                                                                                  |                     | Transiti@ns <sup>-</sup> |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 65 70              | Adds 0.50 to 3.50 in 0.25 steps                                                                                  |                     | Transiti@ns <sup>-</sup> |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ((                 | HOYA BALANSIS  HOYA DAYNAMIC  14mm  HOYA DAYNAMIC  14mm  SEIKO SYNERGY X  6.50 70  15mm  6.50 6.50 6.50 70  15mm | + PLUS MINUS - 6.00 | + PLUS MINUS - 6.00      | # PLUS | HOYA LIFESTYLE 3  + PLUS Adds 0.75 to 3.50 in 0.25 steps Available designs - Urban/Indoor/Outdoor  HOYA BALANSIS  + PLUS Adds 0.75 to 3.50 in 0.25 steps Adds 0.75 to 3.50 in 0.25 steps Adds 0.75 to 3.50 in 0.25 steps    Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.50 in 0.25 steps   Adds 0.75 to 3.75 to 3.7 |



#### RESIN PROGRESSIVES **DRIVEWEAR**®



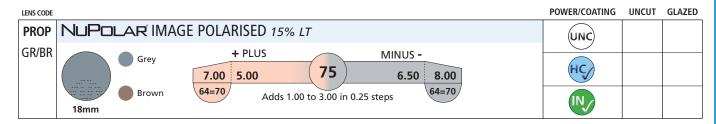
## 1.50

#### RESIN PROGRESSIVES **DRIVEWEAR®**

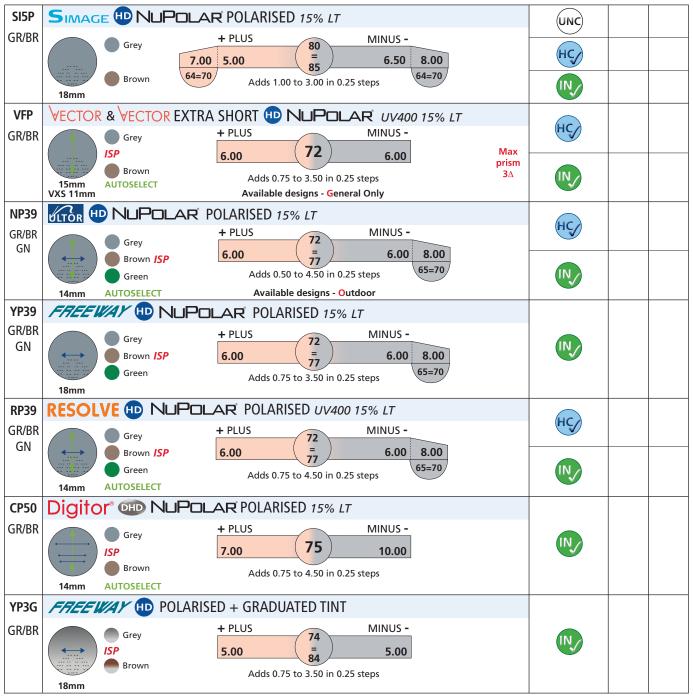


| LENS CODE |                                               |                 |                                                              | POWER/COATING | UNCUT | GLAZED |
|-----------|-----------------------------------------------|-----------------|--------------------------------------------------------------|---------------|-------|--------|
| RUDR      | RESOL                                         | .VE 🕕 Transiti@ | ns° <b>DriveWear</b> ° 35% - 22% - 12% LT                    |               |       |        |
|           | <b>A</b>                                      |                 | + PLUS MINUS -                                               |               |       |        |
|           |                                               | ISP             | 6.00 = 6.00 Adds 0.75 to 4.50 in 0.25 steps                  | IN,           |       |        |
|           | 14mm                                          | AUTOSELECT      | 7. das 67/3 to 1.36 1.1. 0.125 steps                         |               |       |        |
| OSDR      | AFAR Transiti@ns DRIVEWEAR 35% - 22% - 12% LT |                 |                                                              |               |       |        |
|           | 13mm<br>18mm                                  | ISP             | + PLUS MINUS - 6.00 75 6.00  Adds 0.50 to 4.50 in 0.25 steps | IN            |       |        |
|           |                                               |                 |                                                              |               |       |        |
|           |                                               |                 |                                                              |               |       |        |
|           |                                               |                 |                                                              |               |       |        |
|           |                                               |                 |                                                              |               |       |        |

## RESIN PHOTOCHROMIC NUPOLAR PROGRESSIVES


| VIP5 | VECTO                                             | o VECTOR EXI | RA SHORT 🐽 INFINITE NUPOLAR CHROMATIC |    |  |  |
|------|---------------------------------------------------|--------------|---------------------------------------|----|--|--|
|      | VECTOR                                            | & VECTOR LAI |                                       |    |  |  |
| GR   |                                                   | ISP          | + PLUS MINUS - 6.00 76 8.00           | IN |  |  |
|      | 15mm<br>VXS 11mm                                  | AUTOSELECT   | Adds 0.75 to 4.50 in 0.25 steps       |    |  |  |
| NIP5 | WITOR INFINITE NUPOLAR CHROMATIC 40% - 9% LT      |              |                                       |    |  |  |
| GR   |                                                   |              | + PLUS MINUS -                        |    |  |  |
|      |                                                   | ISP          | 6.00 (76) 8.00                        | IN |  |  |
|      |                                                   |              | Adds 0.50 to 4.50 in 0.25 steps       |    |  |  |
|      | 14mm                                              | AUTOSELECT   | Available designs - General/Outdoor   |    |  |  |
| SIP5 | SENTO                                             | IR 🕕 INFINIT | E NUPOLAR CHROMATIC 40% - 9% LT       |    |  |  |
| GR   |                                                   | _            | + PLUS MINUS -                        |    |  |  |
|      |                                                   | ISP          | 6.00 (76) 8.00                        | IN |  |  |
|      |                                                   |              | Adds 0.75 to 4.00 in 0.25 steps       |    |  |  |
|      | 14mm                                              | AUTOSELECT   | Available designs - General/Outdoor   |    |  |  |
| MIP5 | SCREEN (ID INFINITE NUPOLAR CHROMATIC 40% - 9% LT |              |                                       |    |  |  |
| GR   |                                                   | _            | + PLUS MINUS -                        |    |  |  |
|      |                                                   | ISP          | 6.00 (76) 8.00                        | IN |  |  |
|      |                                                   |              | Adds 0.75 to 4.00 in 0.25 steps       |    |  |  |
|      | 14mm                                              | AUTOSELECT   | Design - Mobile Users                 |    |  |  |
| YIP5 | FREE                                              | WAY 🕕 INFIN  | IITE NUPOLAR CHROMATIC 40% - 9% LT    |    |  |  |
| GR   |                                                   |              | + PLUS MINUS -                        |    |  |  |
|      |                                                   | ISP          | 6.00 (76) 8.00                        | IN |  |  |
|      |                                                   |              | Adds 0.75 to 3.50 in 0.25 steps       |    |  |  |
|      | 18mm                                              |              |                                       |    |  |  |

AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED Variable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.


**XXL** - Need a larger diameter HD Progressive for those oversize Fashion, Sun or Sports frames? You can add 10mm to the effective diameter by stating XXL next to the HD Progressive or HD SV, additional price see page 136.



#### RESIN POLARISED PROGRESSIVES



#### RESIN HD POLARISED PROGRESSIVES



AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Wariable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.

**XXL** - Need a larger diameter HD Progressive for those oversize Fashion, Sun or Sports frames? You can add 10mm to the effective diameter by stating XXL next to the HD Progressive or HD SV, additional price see page 136.



#### **RESIN SPECIALIST & OCCUPATIONAL PROGRESSIVES**



| LENS CODE          |                                                                 |                                                                            |                                         | POWER/COATING   | UNCUT | GLAZED |
|--------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------|-----------------|-------|--------|
| BP50               | COMBIPAL DIGIT                                                  | AL FT35 <i>ISP</i>                                                         |                                         |                 |       |        |
|                    |                                                                 | + PLUS MINUS -                                                             |                                         |                 |       |        |
| High<br>Adds       |                                                                 | 6.00 (70) 6.00                                                             |                                         | Plano to 6.00   |       |        |
|                    |                                                                 | Adds 1.00 to 6.00 in 0.25 steps<br>OPPOSITE CYLS TO 4.00                   |                                         |                 |       |        |
| UP <mark>50</mark> | PILOTOR RD 40 - LC                                              | WER PROGRESSIVE <i>ISP</i>                                                 |                                         |                 |       |        |
|                    | State pupil height at                                           | + PLUS MINUS -                                                             |                                         |                 |       |        |
|                    | fitting cross along with the separation.                        | 6.00 (75) 6.00                                                             | (Specify both top and bottom additions) | Plano to 6.00   |       |        |
|                    | Minimum separation 8mm<br>Minimum frame depth 32mm              | Adds 0.75 to 3.50 in 0.25 steps<br>OPPOSITE CYLS TO 4.00                   | bottom additions)                       |                 |       |        |
| D050               | 14mm  FILOTOR RD 40 - UF                                        | PPER PROGRESSIVE <i>ISP</i>                                                |                                         |                 |       |        |
| D030               |                                                                 | + PLUS MINUS -                                                             |                                         |                 |       |        |
|                    | State pupil height at fitting cross along with                  | 6.00 (75) 6.00                                                             | (Specify both top and                   | Plano to 6.00   |       |        |
|                    | the separation. Minimum separation 8mm                          | Adds 0.75 to 3.50 in 0.25 steps                                            | bottom additions)                       |                 |       |        |
|                    | Minimum frame depth 32mm                                        | OPPOSITE CYLS TO 4.00                                                      |                                         |                 |       |        |
| UPES               | PILOTOR E - LOWER                                               |                                                                            |                                         |                 |       |        |
|                    | State pupil height at                                           | + PLUS MINUS -                                                             |                                         | Diama to COO    |       |        |
|                    | fitting cross along with the separation.                        | 4.00 75 5.00                                                               | (Specify both top and bottom additions) | Plano to 6.00   |       |        |
|                    | Minimum separation 8mm Minimum frame depth 32mm                 | TOP Adds 0.75 to 3.00 in 0.25 steps BOTTOM Adds 0.75 to 3.50 in 0.25 steps | ,                                       |                 |       |        |
| DPES               | VITOR PILOTOR EU - UPPEI                                        | OPPOSITE CYLS TO 4.00  R PROGRESSIVE <i>ISP</i>                            |                                         |                 |       |        |
|                    |                                                                 | + PLUS MINUS -                                                             |                                         |                 |       |        |
|                    | State pupil height at fitting cross along with                  | 4.00 (75) 5.00                                                             | (Specify both top and                   | Plano to 6.00   |       |        |
|                    | the separation. Minimum separation 8mm Minimum frame depth 32mm | <b>BOTTOM</b> Adds 0.75 to 3.50 in 0.25 steps                              | bottom additions)                       |                 |       |        |
|                    | 14mm                                                            | TOP Adds 0.75 to 3.00 in 0.25 steps OPPOSITE CYLS TO 4.00                  |                                         |                 |       |        |
| UPD                | AUTO-PILOTOR UP                                                 | & DOWN PROGRESSIVE <i>ISP</i>                                              |                                         |                 |       |        |
|                    |                                                                 | + PLUS MINUS -                                                             |                                         | DI . GOO        |       |        |
|                    | Minimum separation 8mm Minimum frame depth 36mm                 | 6.00                                                                       | (Specify both top and bottom additions) | Plano to 6.00   |       |        |
|                    | 14mm                                                            | Adds 0.75 to 3.50 in 0.25 steps<br>OPPOSITE CYLS TO 4.00                   |                                         |                 |       |        |
|                    | 1711111                                                         |                                                                            |                                         |                 |       |        |
|                    |                                                                 |                                                                            |                                         |                 |       |        |
|                    |                                                                 |                                                                            |                                         |                 |       |        |
|                    |                                                                 |                                                                            |                                         |                 |       |        |
|                    | <b>10</b> au                                                    |                                                                            |                                         |                 |       |        |
| USLA               | SLAB-ON BI-PRISM /                                              |                                                                            | (10)                                    |                 |       |        |
|                    | VERTICAL Prism to 6 <sup>Δ</sup> on ISP                         | + PLUS MINUS -                                                             |                                         | Plano to 6.00   |       |        |
|                    | VERTICAL                                                        | 6.00 = 6.00                                                                | Prism in<br>1 <sup>^</sup> steps        | 1 10110 to 0.00 |       |        |
|                    | Prism to 10 <sup>Δ</sup> in lower                               | Adds 0.75 to 3.50 in 0.25 steps<br>OPPOSITE CYLS TO 4.00                   |                                         |                 |       |        |
|                    |                                                                 |                                                                            |                                         |                 |       |        |
|                    |                                                                 |                                                                            |                                         |                 |       |        |
|                    |                                                                 |                                                                            |                                         |                 |       |        |
|                    |                                                                 |                                                                            |                                         |                 |       |        |
|                    |                                                                 | For other bespoke lens design options                                      | D 126                                   |                 |       |        |

For other bespoke lens design options see Page 136









## TRIVEX LENSES 1.53 INDEX

TRIVEX

 $Reactolite^{\circ}$ 

Transiti@ns<sup>\*</sup>

Transitions G = N8

Transitions XTRActive

Transiti@ns\* Vantage\*

Transiti@ns<sup>®</sup> DRIVEWEAR<sup>®</sup>



1.53

Index

45

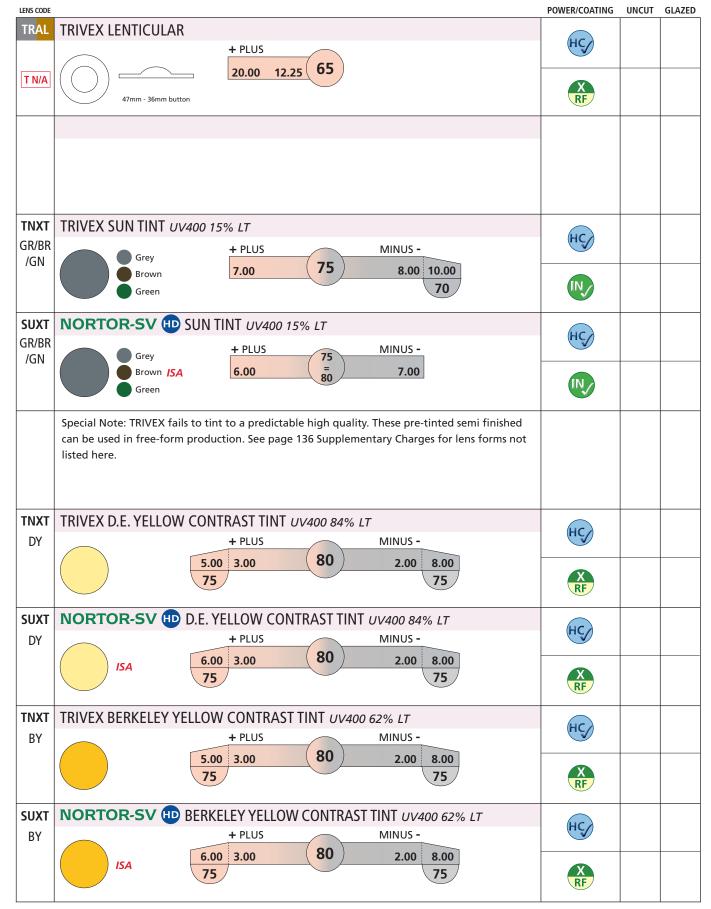
**Abbe** 

1.11g/cm<sup>3</sup>

**Density** 

400nm

UV






| LENS CODE          |                                            | POWER/COATING | UNCUT | GLAZED |
|--------------------|--------------------------------------------|---------------|-------|--------|
| TRSS               | TRIVEX                                     | HC            |       |        |
| T N/A              | + PLUS 60 MINUS - 70 8.00                  | RF            |       |        |
| TRV                | OPPOSITE CYLS TO 2.00                      |               |       |        |
| TRSS               | TRIVEX SUPER MINI + PLUS 6.00 1.00 50      | HC            |       |        |
| TRV                | OPPOSITE CYLS TO 2.00                      | RF            |       |        |
| TRIX               | TRIVEX ASPHERIC                            |               |       |        |
| T N/A              | + PLUS MINUS - 7.00  OPPOSITE CYLS TO 2.00 | RF            |       |        |
| TRIS               | TRIVEX                                     | HC            |       |        |
| T N/A              |                                            | X<br>RF       |       |        |
| TRIS               | TRIVEX                                     | HC            |       |        |
| T N/A              | + PLUS MINUS - 7.50 76 8.00                | X             |       |        |
| TRIS               | TRIVEX                                     | (1)           |       |        |
| T N/A              | + PLUS MINUS - 6.00 2.00                   | X             |       |        |
| TRIS               | TRIVEX HIGH PLUS                           | HC.           |       |        |
| T N/A              | + PLUS 12.00 8.25 65                       | (HC)          |       |        |
| TRUS               | TRIVEX ASPHERIC                            | 110           |       |        |
|                    | + PLUS MINUS -                             | HC            |       |        |
| T N/A              | 8.00 70 9.00                               | X             |       |        |
| SU <mark>53</mark> | NORTOR-SV (11) TRIVEX                      | HC            |       |        |
| T N/A              | + PLUS MINUS - 7.50 76 8.00                | X             |       |        |
| SU <mark>53</mark> | NORTOR-SV (ID TRIVEX                       |               |       |        |
| T N/A              | + PLUS MINUS - 8.00 3.00                   | HC)           |       |        |
|                    |                                            | RF            |       |        |





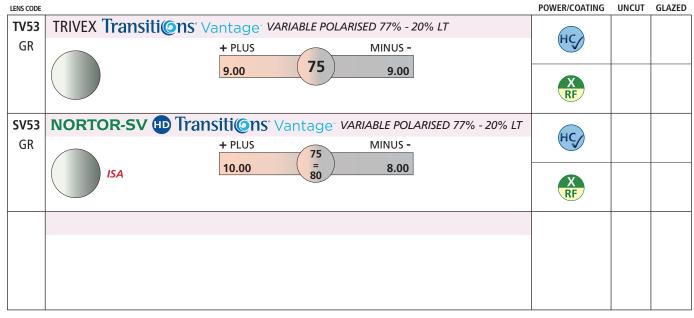


\* SPORTOR WRAP OPTIONS SEE PAGES 44 and 56

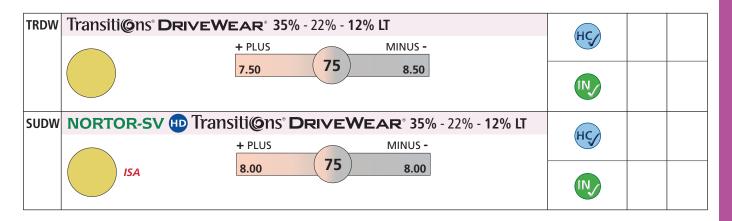




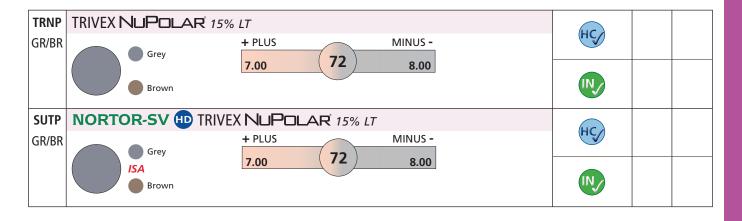



| LENS CODE |                                                        | POWER/COATING | UNCUT | GLAZED |
|-----------|--------------------------------------------------------|---------------|-------|--------|
| TRIS      | TRIVEX Transitions GEN8                                | (IIC)         |       |        |
| GR/BR     | + PLUS MINUS -                                         | HC            |       |        |
|           | 7.00 (76)                                              |               |       |        |
|           | Brown                                                  | RF            |       |        |
| TRIS      | TRIVEX Transitions GEN8 10                             |               |       |        |
| GR/BR     | + PLUS MINUS -                                         | HC            |       |        |
|           | Grey 80 2.00                                           | _             |       |        |
|           | Brown                                                  | X<br>RF       |       |        |
| TT16      | TRIVEY ACRUERIC Tropositions                           |               |       |        |
| TTIS      | TRIVEX ASPHERIC Transitions                            | HC            |       |        |
| GR/BR     | + PLUS MINUS -                                         |               |       |        |
|           | 6.00 5.00 <b>75</b> 11.00                              | X             |       |        |
|           | Brown 70                                               | X             |       |        |
| SU53      | NORTOR-SV ID TRIVEX Transitions GEN8                   |               |       |        |
| GR/BR     | + PLUS MINUS -                                         | HC            |       |        |
|           | Grey 7.00 76 8.00                                      | _             |       |        |
|           | Brown                                                  | X<br>RF       |       |        |
|           |                                                        |               |       |        |
| SU53      | NORTOR-SV TRIVEX Transitions 10                        | HC            |       |        |
| GR/BR     | + PLUS MINUS -                                         |               |       |        |
|           | (SA 8.00 3.00 )                                        |               |       |        |
|           | Brown                                                  | RF            |       |        |
|           |                                                        |               |       |        |
|           |                                                        |               |       |        |
|           |                                                        |               |       |        |
|           |                                                        |               |       |        |
| TXIS      | TRIVEX <b>Transitions</b> XTRActive 83% - 10% LT       |               |       |        |
| GR/BR     | + PLUS MINUS -                                         | HC            |       |        |
|           | 7.00 (76) 10.00                                        |               |       |        |
|           | Brown                                                  | X             |       |        |
|           |                                                        |               |       |        |
| SX53      | NORTOR-SV ID TRIVEX Transitions XTRActive 83% - 10% LT | HC            |       |        |
| GR/BR     | Grey + PLUS MINUS -                                    | HC            |       |        |
|           | 7.00 (76) 8.00                                         |               |       |        |
|           | Brown                                                  | RF            |       |        |
|           |                                                        |               |       |        |
|           |                                                        |               |       |        |
|           |                                                        |               |       |        |
|           |                                                        |               |       |        |
|           |                                                        |               |       |        |
|           |                                                        | •             |       |        |

<sup>\*</sup> VRAP OPTIONS SEE PAGES 44 and 56



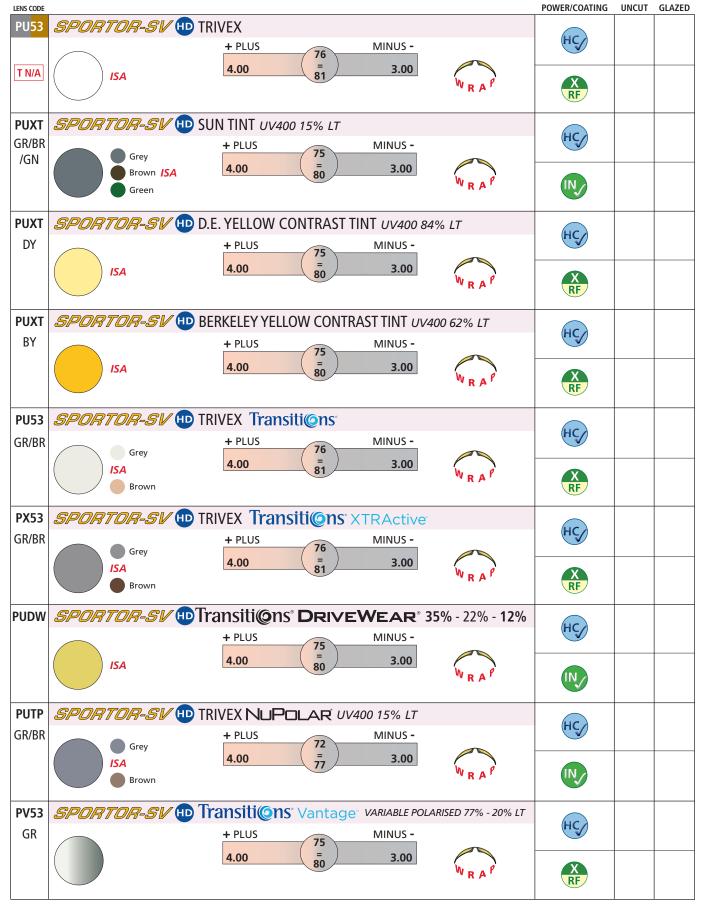





## TRIVEX Transitions DRIVEWEAR




## TRIVEX SINGLE VISION POLARISED











The **SPORTOR** Rx range is confirmed on +8.00 Base lens wraps. Should +6.00 base be sufficiently curved this will then have the effect of **reducing** the available plus range by 2.00D but **increasing** the minus availability by a further 2.00D.

**XXL** - Need a larger diameter HD Progressive for those oversize Fashion, Sun or Sports frames? You can add 10mm to the effective diameter by stating XXL next to the HD Progressive or HD SV, additional price see page 136.

<sup>\*</sup> All SPORTOR lens forms also available as S.E.P. Atoral design central 50mm with free-form edge blend to reduce substance.



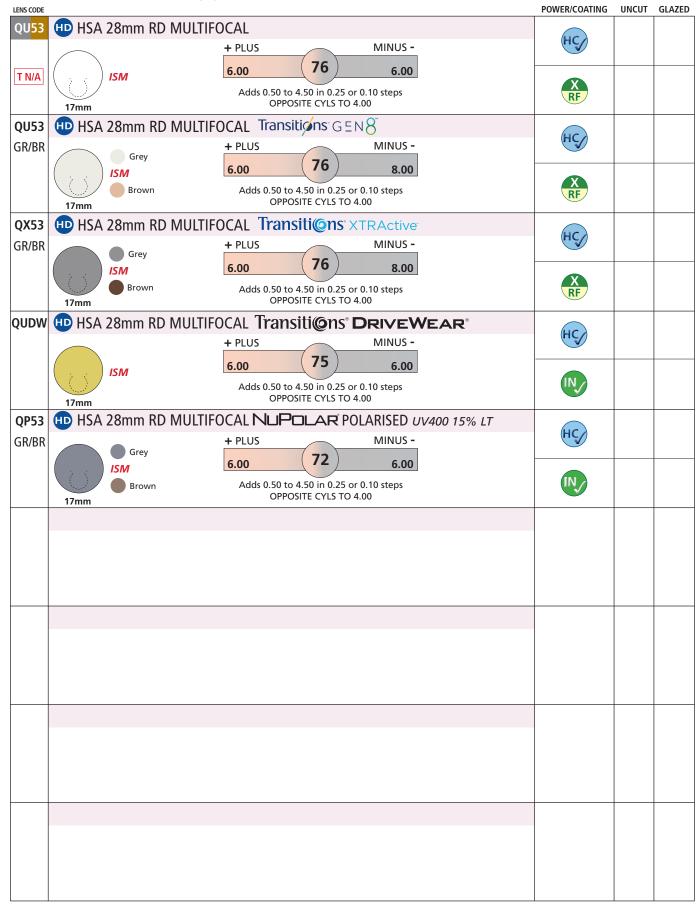


| LENS CODE |                                                                        | POWER/COATING | UNCUT | GLAZED |
|-----------|------------------------------------------------------------------------|---------------|-------|--------|
| TR28      | TRIVEX FLAT TOP 28  + PLUS MINUS -                                     | HC            |       |        |
| T N/A     | 7.00 76 10.00 Adds 1.00 to 3.50 in 0.25 steps                          | X             |       |        |
| TR28      | TRIVEX FLAT TOP 28 Transitions                                         |               |       |        |
| GR/BR     | + PLUS MINUS - 7.00 76 8.00                                            | HC            |       |        |
|           | Adds 1.00 to 3.50 in 0.25 steps                                        | X<br>RF       |       |        |
| TR35      | TRIVEX FLAT TOP 35                                                     | (HC)          |       |        |
| T N/A     | + PLUS MINUS -  7.00 76 8.00  Adds 1.00 to 3.50 in 0.25 steps and 4.00 | (HC)          |       |        |
| TR35      | TRIVEX Transitions G = N8 FLAT TOP 35                                  | HC.           |       |        |
| GR        | + PLUS MINUS -                                                         |               |       |        |
|           | 7.00 74 8.00 Adds 1.00 to 3.50 in 0.25 steps                           | X             |       |        |
|           |                                                                        |               |       |        |
|           |                                                                        |               |       |        |
|           |                                                                        |               |       |        |
|           |                                                                        |               |       |        |

## TRIVEX TRIFOCALS

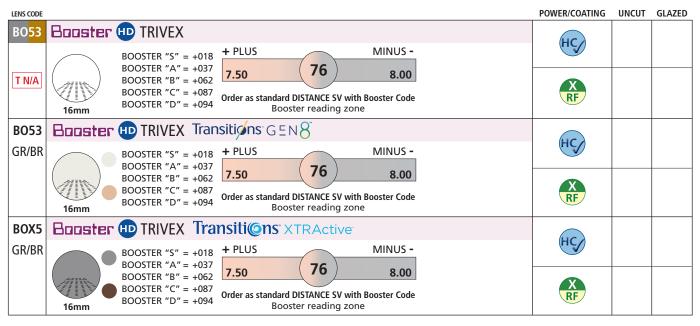




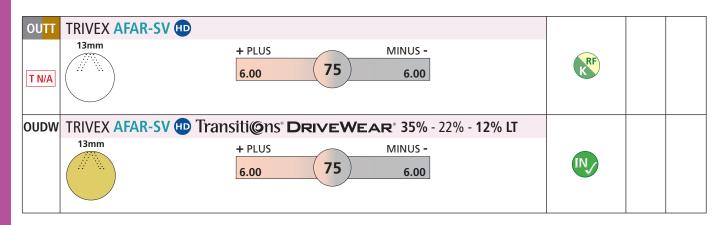





| LENS CODE          |                           |                                                                             | POWER/COATING | UNCUT | GLAZED |
|--------------------|---------------------------|-----------------------------------------------------------------------------|---------------|-------|--------|
| FR <mark>53</mark> | IRS 28mm/40mm BIFO        | CAL                                                                         |               |       |        |
|                    |                           | + PLUS MINUS -                                                              | HC            |       |        |
| T N/A              |                           | 7.00 7.00                                                                   |               |       |        |
| 40                 | ISB                       | 7.00                                                                        | X             |       |        |
| 40mm<br>4R53       |                           | Adds $0.50$ to $\overline{4.50}$ in $0.25$ steps<br>OPPOSITE CYLS TO $4.00$ | RF            |       |        |
| LB53               | IRS 22mm LENTIC BIFO      | CAI                                                                         |               |       |        |
|                    |                           | + PLUS                                                                      | HC            |       |        |
| TAVA               |                           | 15.00 8.00 65                                                               |               |       |        |
| T N/A              | ISB 47mm button           |                                                                             | X             |       |        |
|                    |                           | Adds 0.50 to 4.50 in 0.25 steps                                             | RF            |       |        |
| FR53               | IRS 28mm/40mm BIFO        | CAL Transitions GEN8                                                        |               |       |        |
| GR/BR              |                           | + PLUS MINUS -                                                              | HC            |       |        |
| GIUDI              | Grey                      | 70                                                                          |               |       |        |
| 40mm               | ISB                       | 0.00                                                                        | X             |       |        |
| 4R53               | Brown                     | Adds 0.50 to 4.50 in 0.25 steps OPPOSITE CYLS TO 4.00                       | RF            |       |        |
| GR/BR<br>FX53      | IRS 28mm//0mm RIFO        | CAL Transitions XTRActive                                                   |               |       |        |
|                    | INS ZOIIIII/40IIIII DII O |                                                                             | HC            |       |        |
| GR/BR              | Grey                      | 70                                                                          |               |       |        |
| 40mm               | ( ) ISB                   | 8.00                                                                        |               |       |        |
| 4X53               | Brown                     | Adds 0.50 to 4.50 in 0.25 steps OPPOSITE CYLS TO 4.00                       | RF            |       |        |
| GR/BR              |                           |                                                                             |               |       |        |
| FV53               | IRS 28mm/40mm Iran        | sitions Vantage VARIABLE POLARISED 77% - 20% LT                             | HC            |       |        |
| GR                 |                           | + PLUS MINUS -                                                              |               |       |        |
|                    | ISB                       | 6.00 (75)                                                                   |               |       |        |
| 40mm               | 138                       | Adds 0.50 to 4.50 in 0.25 steps                                             | X<br>RF       |       |        |
| 4V53               |                           | OPPOSITE CYLS TO 4.00                                                       | Nr.           |       |        |
| FRDW               | IRS 28mm/40mm BIFO        | Transiti@ns® DRIVEWEAR®                                                     | (UC)          |       |        |
|                    |                           | + PLUS MINUS -                                                              |               |       |        |
|                    | ISB                       | 6.00 (75) 8.00                                                              |               |       |        |
| 40mm               |                           | Adds 0.50 to 4.50 in 0.25 steps                                             | IN            |       |        |
| 4RDW               |                           |                                                                             |               |       |        |
| FP53               | IRS 28mm/40mm BIFOC       | AL NUPOLAR <sup>®</sup> UV400 15% LT                                        |               |       |        |
| GR/BR              |                           | + PLUS MINUS -                                                              | H             |       |        |
|                    | Grey                      | 7.00 72 7.00                                                                |               |       |        |
| 40mm               | ISB<br>Rrown              | Adds 0.50 to 4.50 in 0.25 steps                                             | IN            |       |        |
| 4P53               | Brown                     | OPPOSITE CYLS TO 4.00                                                       |               |       |        |
|                    |                           |                                                                             |               |       |        |
|                    |                           |                                                                             |               |       |        |
|                    |                           |                                                                             |               |       |        |
|                    |                           |                                                                             |               |       |        |
|                    |                           |                                                                             |               |       |        |
|                    |                           |                                                                             |               |       |        |
|                    |                           |                                                                             |               |       |        |
|                    |                           |                                                                             |               |       |        |
|                    |                           |                                                                             |               |       |        |
|                    |                           |                                                                             |               |       |        |
|                    |                           |                                                                             |               |       |        |



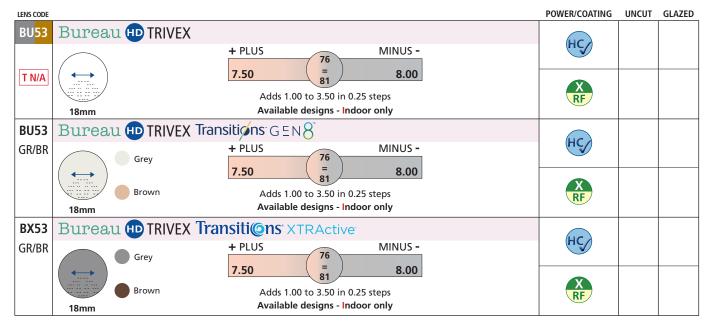


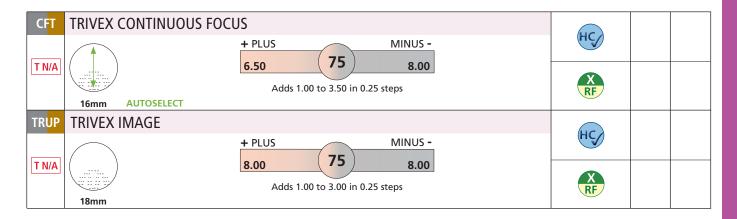




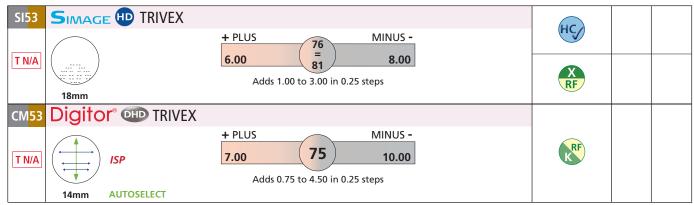




## TRIVEX\* HD DISTANCE MYOPIA ZONE




## TRIVEX DEGRESSIVES (ENHANCED NEAR VISION)

| OFTR  | TRIVEX <b>VERSATILE</b> OFFICE | HD                                                                                         |                                        |      |  |
|-------|--------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------|------|--|
|       | 13mm                           | + PLUS MINUS -                                                                             |                                        | H    |  |
| T N/A | 16mm                           | 7.50 76 8.00  DEGRESSIONS -0.50, -0.75, -1.00, -1.25, -1.50, -1.75, -2.00, -2.25, -2.50 DS | Order by<br>reading Rx<br>Distance PDs | X    |  |
| OFTR  | TRIVEX <b>VERSATILE</b> OFFICE | Transitions GEN8                                                                           |                                        | (UC) |  |
| GR/BR | 13mm<br>Grey                   | + PLUS MINUS -                                                                             |                                        |      |  |
|       | (1, 1)                         | 7.50 (76) 8.00                                                                             | Order by reading Rx                    |      |  |
|       | 16mm                           | DEGRESSIONS -0.50, -0.75, -1.00, -1.25, -1.50, -1.75, -2.00, -2.25, -2.50 DS               | Distance PDs                           | RF   |  |
| OFXR  | TRIVEX <b>VERSATILE</b> OFFICE | Transitions XTRActive                                                                      |                                        | (UC) |  |
| GR/BR | 13mm<br>Grey                   | + PLUS MINUS -                                                                             |                                        |      |  |
|       |                                | 7.50 (76) 8.00                                                                             | Order by reading Rx                    |      |  |
|       | 16mm                           | DEGRESSIONS -0.50, -0.75, -1.00, -1.25, -1.50, -1.75, -2.00, -2.25, -2.50 DS               | Distance PDs                           | RF   |  |






## TRIVEX\* PROGRESSIVES



## TRIVEX DUAL SURFACE PROGRESSIVES



AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Wariable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.



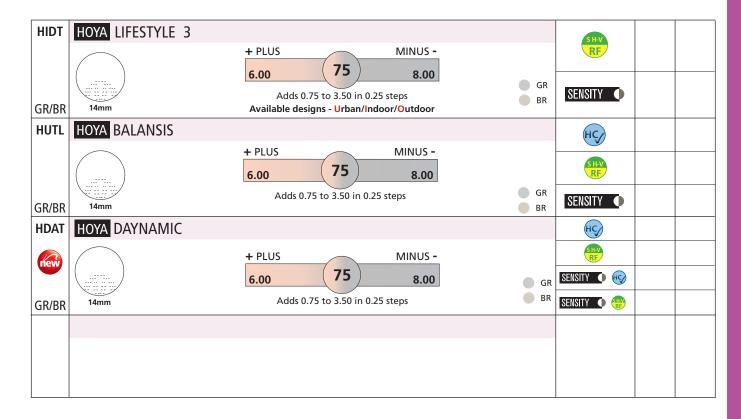






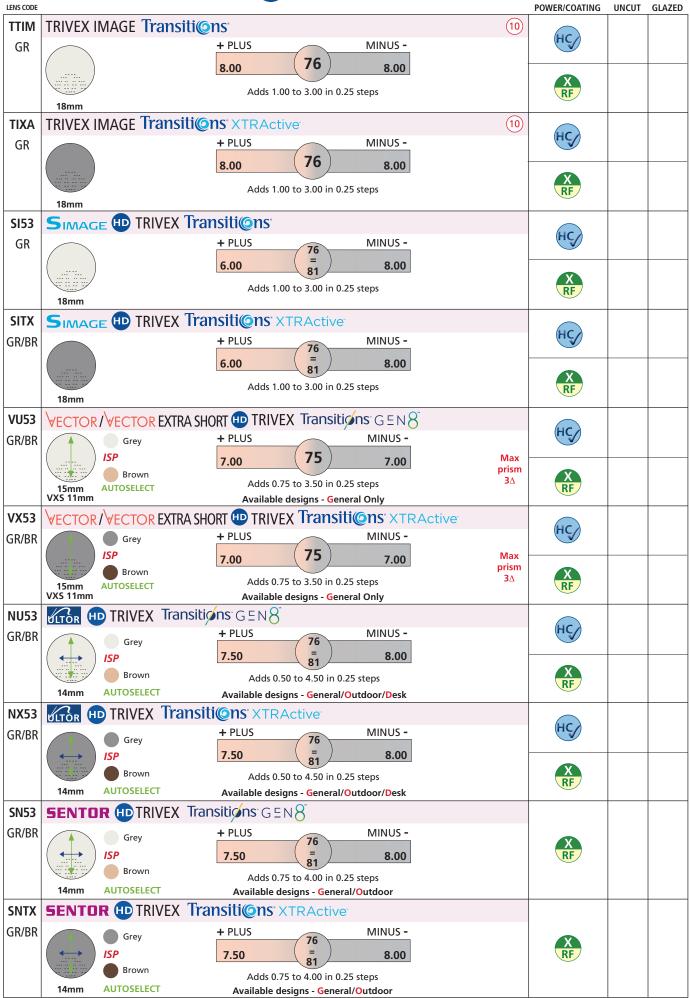
AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Variable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.

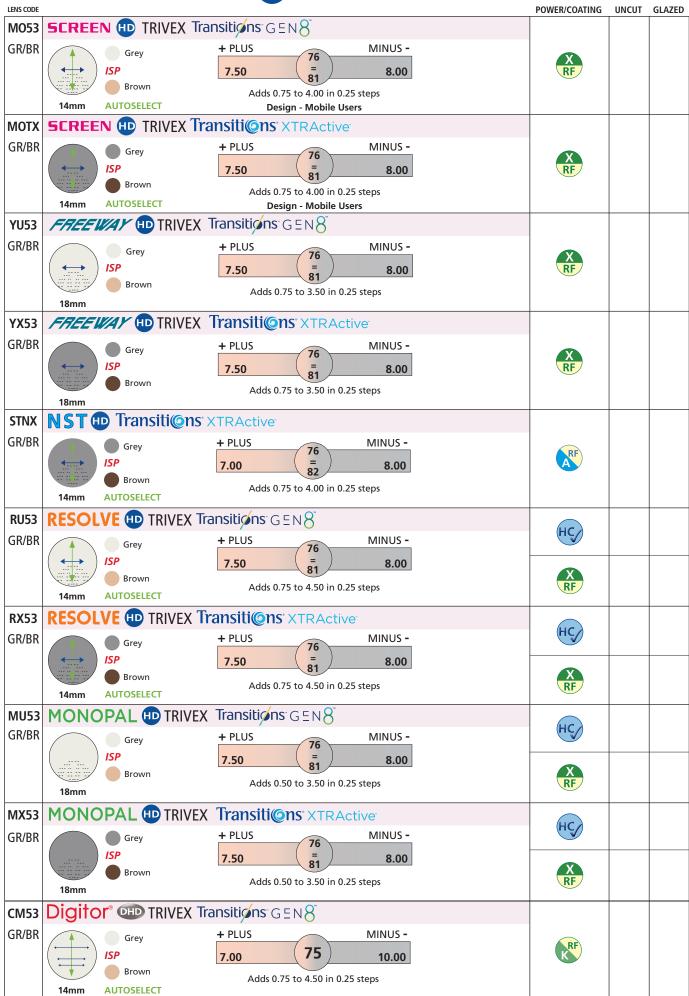

Overcoloured background indicates **Reactolite**® availability quick guide or see separate catalogue







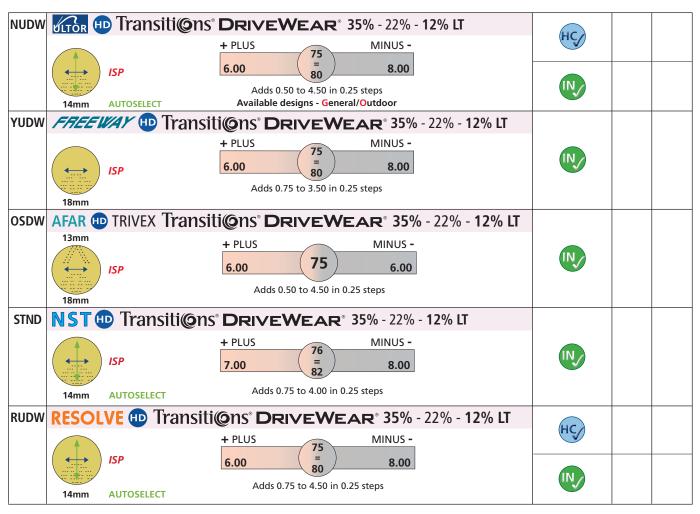

#### **FF** PROGRESSIVES







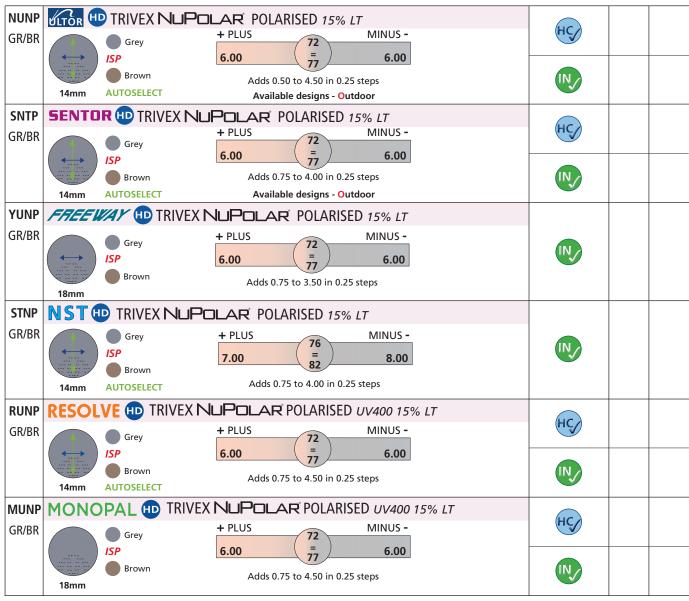










## TRIVEX\* Transiti@ns\* DRIVEWEAR\*





| LENS CODE |                                                     | POWER/COATING | UNCUT | GLAZED |
|-----------|-----------------------------------------------------|---------------|-------|--------|
| MUDW      | MONOPAL ID Transiti@ns DRIVEWEAR 35% - 22% - 12% LT | (UC)          |       |        |
|           | + PLUS MINUS -                                      | HC            |       |        |
|           | ISP = 8.00                                          |               |       |        |
|           | Adds 0.50 to 3.50 in 0.25 steps                     |               |       |        |
|           |                                                     |               |       |        |
|           |                                                     |               |       |        |
|           |                                                     |               |       |        |
|           |                                                     |               |       |        |
|           |                                                     |               |       |        |

## TRIVEX NUPOLAR PROGRESSIVES



AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Wariable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.







AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Wariable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.

The **SPORTPAL** Rx range is confirmed on +8.00 Base lens wraps. Should +6.00 base be sufficiently curved this will then have the effect of **reducing** the available plus range by 2.00D but **increasing** the minus availability by a further 2.00D.

**XXL** - Need a larger diameter HD Progressive for those oversize Fashion, Sun or Sports frames?

You can add 10mm to the effective diameter by stating XXL next to the HD Progressive or HD SV, additional price see page 136.









# RESIN LENSES 1.56 INDEX 1.58 INDEX

VISTA-MESH

**V-M Reactolite** 

**UV BLOCKING** 

BLUTECH BT66 FILTER BLUTECH BT70 FILTER

1.56

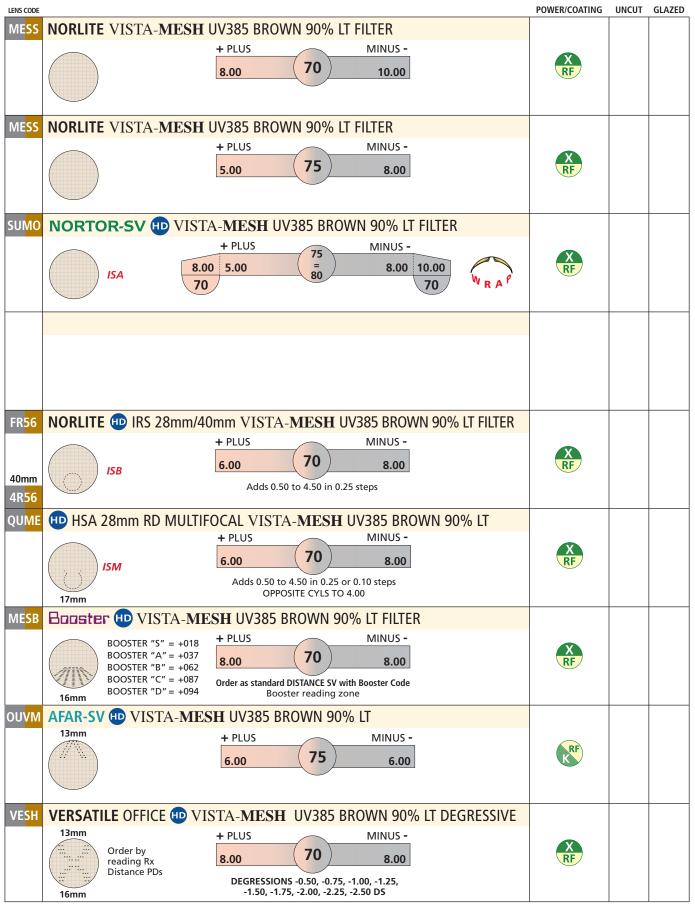
Index

38

**Abbe** 

1.28g/cm<sup>3</sup>

**Density** 


385nm

UV



#### NORLITE VISTA-MESH





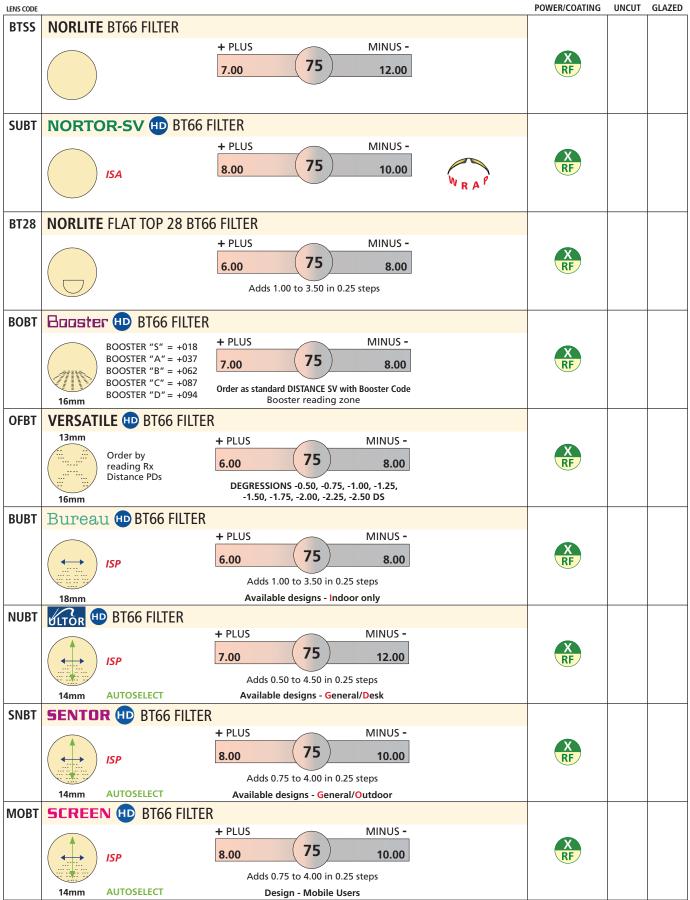
Overcoloured background indicates **Reactolite**® availability quick guide or see separate catalogue



#### NORLITE VISTA-MESH



| LENS CODE    |                                         |                  |                                          | POWER/COATING | UNCUT | GLAZED |
|--------------|-----------------------------------------|------------------|------------------------------------------|---------------|-------|--------|
| BUME         | Burea                                   | 11 🛍 VISTA-MI    | ESH UV385 BROWN 90% LT FILTER            |               |       |        |
|              | Daroa                                   | u VISITI WII     | + PLUS MINUS -                           |               |       |        |
|              |                                         |                  | 70                                       | X             |       |        |
|              | <b>( ←→ )</b>                           | ISP              | 8.00 = 8.00                              | RF            |       |        |
|              |                                         |                  | Adds 1.00 to 3.50 in 0.25 steps          |               |       |        |
|              | 18mm                                    |                  | Available designs - Indoor only          |               |       |        |
|              | 1011111                                 |                  | Available designs - indoor only          |               |       |        |
|              |                                         |                  |                                          |               |       |        |
|              |                                         |                  |                                          |               |       |        |
|              |                                         |                  |                                          |               |       |        |
|              |                                         |                  |                                          |               |       |        |
|              |                                         |                  |                                          |               |       |        |
|              |                                         |                  |                                          |               |       |        |
| <b>VU</b> 56 | <b>∀ECTOR</b>                           | . & ∀ECTOR EXTRA | A SHORT HD VISTA-MESH UV385 BROWN 90% LT |               |       |        |
|              |                                         |                  | + PLUS MINUS -                           |               |       |        |
|              |                                         | ISP              | 9 00 = 10 00 Max                         | X             |       |        |
|              |                                         | 151              | 8.00 = 10.00 Max prism                   | RF            |       |        |
|              | 15mm                                    | AUTOSELECT       | Adds 0.75 to 3.50 in 0.25 steps 3∆       |               |       |        |
|              | VXS 11mm                                | AUTOSEEECT       | Available designs - General only         |               |       |        |
| NUME         | WITOP H                                 | VISTA-MESH       | UV385 BROWN 90% LT FILTER                |               |       |        |
|              | OLIOK                                   |                  | + PLUS MINUS -                           |               |       |        |
|              |                                         |                  | 70                                       | X             |       |        |
|              |                                         | ISP              | 8.00 = 10.00                             | RF            |       |        |
|              |                                         |                  | Adds 0.50 to 4.50 in 0.25 steps          |               |       |        |
|              | 14mm                                    | AUTOSELECT       | Available designs - General/Outdoor/Desk |               |       |        |
| SNME         |                                         |                  |                                          |               |       |        |
| SIMINIE      | SENIU                                   | VISTA-NII        | ESH UV385 BROWN 90% LT FILTER            |               |       |        |
|              |                                         |                  | + PLUS MINUS -                           |               |       |        |
|              |                                         | ISP              | 8.00 = 10.00                             | RF            |       |        |
|              |                                         | 151              | Adds 0.75 to 3.50 in 0.25 steps          |               |       |        |
|              | 14                                      | AUTOSELECT       |                                          |               |       |        |
|              | 14mm                                    |                  | Available designs - General/Outdoor      |               |       |        |
| MOME         | SCREE                                   | N HD VISTA-MI    | ESH UV385 BROWN 90% LT FILTER            |               |       |        |
|              |                                         |                  | + PLUS MINUS -                           |               |       |        |
|              |                                         | 100              | 8 00 = 10 00                             | N DE          |       |        |
|              |                                         | ISP              | 75                                       | KF            |       |        |
|              | T. T.                                   |                  | Adds 0.75 to 3.50 in 0.25 steps          |               |       |        |
|              | 14mm                                    | AUTOSELECT       | Design - Mobile Users                    |               |       |        |
| YUME         | FREE                                    | WAY HD VISTA-    | MESH UV385 BROWN 90% LT FILTER           |               |       |        |
|              |                                         |                  | + PLUS MINUS -                           | _             |       |        |
|              |                                         |                  | 70 = 10.00                               | X             |       |        |
|              |                                         | ISP              | 8.00 = 10.00                             | RF            |       |        |
|              |                                         |                  | Adds 0.75 to 3.50 in 0.25 steps          |               |       |        |
| L            | 18mm                                    |                  |                                          |               |       |        |
| OSVM         | AFAR H                                  | VISTA-MESH       | UV385 BROWN 90% LT FILTER                |               |       |        |
|              | 13mm                                    |                  | + PLUS MINUS -                           |               |       |        |
|              |                                         |                  |                                          | RE            |       |        |
|              | ∴ · · · · · · · · · · · · · · · · · · · | ISP              | 6.00 (75) 6.00                           | K             |       |        |
|              |                                         |                  | Adds 0.50 to 4.50 in 0.25 steps          | _             |       |        |
|              | 18mm                                    |                  | Adds 0.30 to 4.30 iii 0.23 steps         |               |       |        |
| RUME         |                                         | VE (ID VICTA N   | IESH UV385 BROWN 90% LT FILTER           |               |       |        |
| KOIVIE       | KLJOL                                   | VISIA-IV         |                                          |               |       |        |
|              |                                         |                  | + PLUS MINUS -                           | X             |       |        |
|              | <b></b>                                 | ISP              | 8.00 = 10.00                             | RF            |       |        |
|              | *                                       |                  |                                          |               |       |        |
|              | 14mm                                    | AUTOSELECT       | Adds 0.75 to 4.50 in 0.25 steps          |               |       |        |
|              |                                         |                  |                                          | İ             |       |        |


AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Variable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.



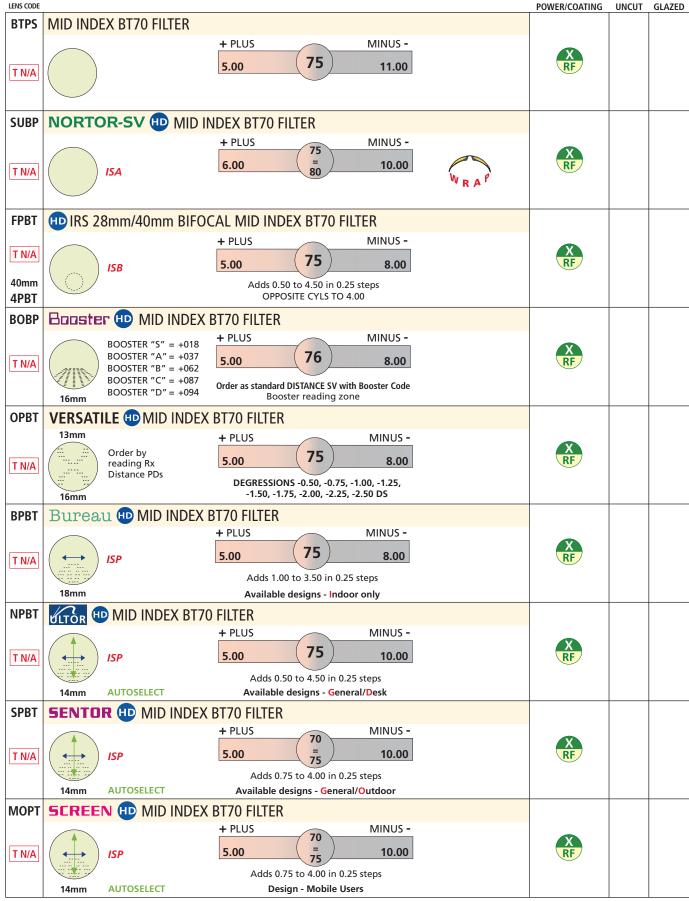
#### **NORLITE BLUTECH 66% FILTER**





AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Wariable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.


**XXL** - Need a larger diameter HD Progressive for those oversize Fashion, Sun or Sports frames? You can add 10mm to the effective diameter by stating XXL next to the HD Progressive or HD SV, additional price see page 136.

For transmission data see Prescription Companion on www.norville.co.uk



#### **NORLITE BLUTECH 70% FILTER**





AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Wariable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.

**XXL** - Need a larger diameter HD Progressive for those oversize Fashion, Sun or Sports frames? You can add 10mm to the effective diameter by stating XXL next to the HD Progressive or HD SV, additional price see page 136.









## POLYCARB LENSES 1.59 INDEX

**POLYCARBONATE** 

Reactolite®

Transiti@ns<sup>®</sup>

Transitions G EN8

Transitions XTRActive

Transiti@ns° DRIVEWEAR°

**NuPolar** 

**POLARISED MIRROR** 

ENHANCED UV+ POLYCARBONATE

Clear surfaced SV and free-form designs are available in UV410 poly material

PUV+

1.59

Index

31

**Abbe** 

1.2g/cm<sup>3</sup>

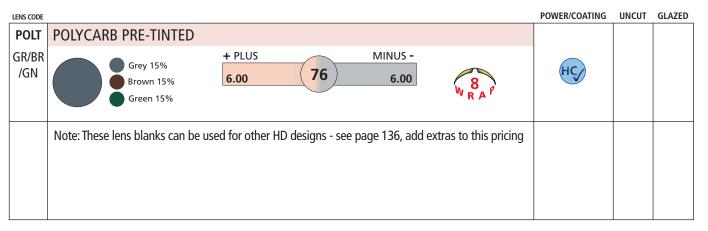
**Density** 

380nm

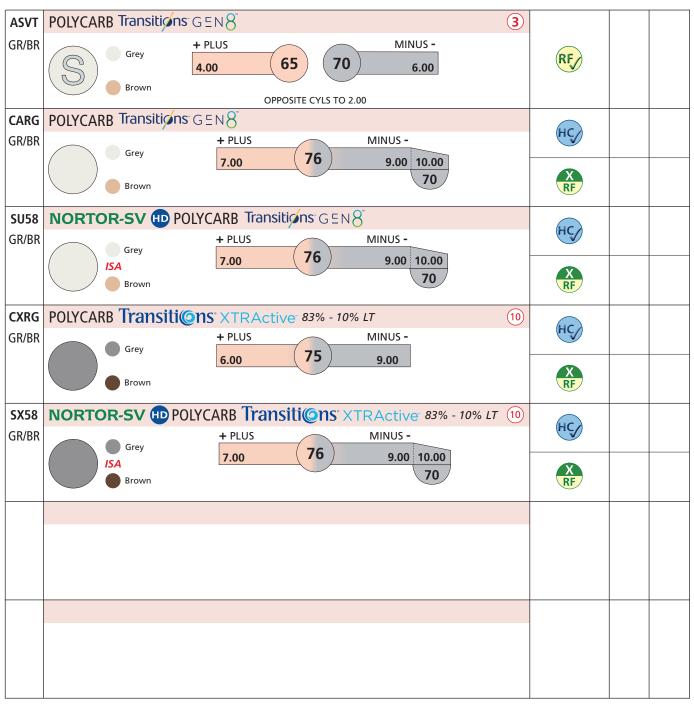
UV



#### POLYCARB SINGLE VISION



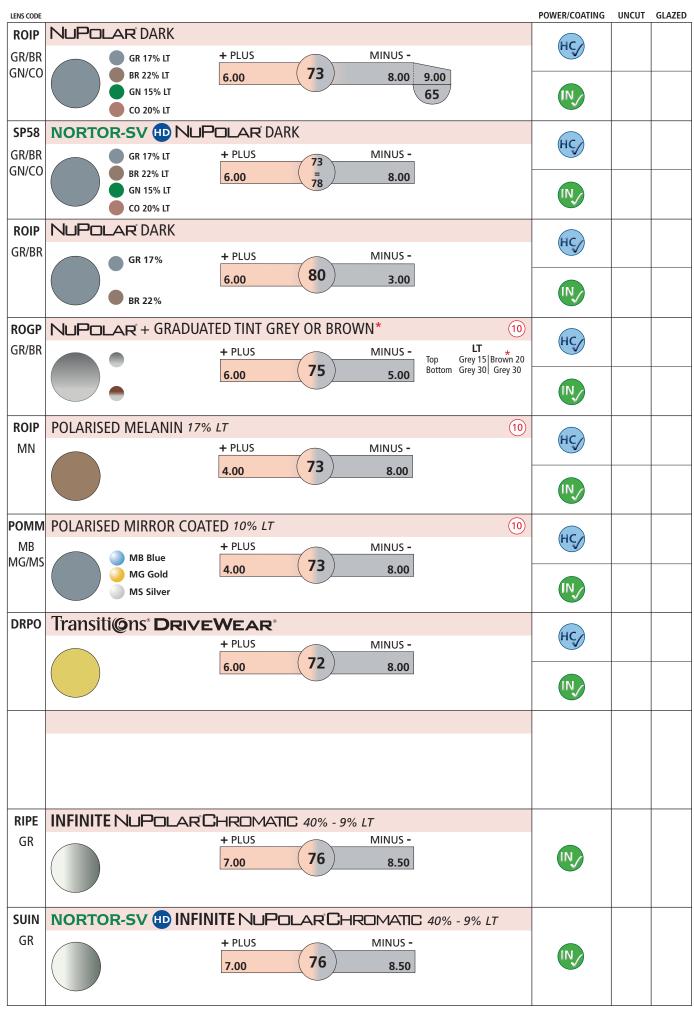

| LENS CODE          |                                           | POWER/COATING            | UNCUT | GLAZED |
|--------------------|-------------------------------------------|--------------------------|-------|--------|
| CARP               | POLYCARB 3                                |                          |       |        |
|                    | + PLUS 55                                 | HC.                      |       |        |
| T80%               | 6.00                                      | HC                       |       |        |
|                    | OPPOSITE CYLS TO 2.00                     |                          |       |        |
| CARP               | POLYCARB                                  |                          |       |        |
|                    | + PLUS MINUS -                            | T 80% HC                 |       |        |
|                    | 6.00 65 70 6.00                           |                          |       |        |
| CARX               | OPPOSITE CYLS TO 2.00                     | RF                       |       |        |
| CARP               | POLYCARB                                  |                          |       |        |
|                    | + PLUS                                    |                          |       |        |
|                    | 4.00 (70)                                 | HC                       |       |        |
|                    | OPPOSITE CYLS TO 2.00                     |                          |       |        |
| POLY               | POLYCARB                                  | HC                       |       |        |
|                    | + PLUS MINUS -                            | Plano to 6.00            |       |        |
| T20%               | 10.00 8.00 7.00 (76) 10.00 Also available | 6.25 to 10.00<br>HC PUV+ |       |        |
| POLV               | 60 65 PUV+                                | Plano to 6.00            |       |        |
| POLY               | POLYCARB                                  | 6.25 to 10.00            |       |        |
| 101                | + PLUS                                    |                          |       |        |
| T20%               | 6.00 3.00 80                              | HC                       |       |        |
| 12070              | WRAP                                      |                          |       |        |
| SU <mark>58</mark> | NORTOR-SV HD POLYCARB                     | HC                       |       |        |
| 3030               | + PLUS MINUS -                            | X                        |       |        |
| T20%               | 8.00 7.00 (76) 10.00 Also available       |                          |       |        |
|                    | PUV+                                      | PUV+                     |       |        |
| SU5V               | OPPORTOR ON A POLYCARD                    | _                        |       |        |
| PU <mark>58</mark> | SPORTOR-SV HD POLYCARB  + PLUS MINUS -    | HC                       |       |        |
| T20%               |                                           | X<br>RF                  |       |        |
|                    | W R A P PUV+                              | PUV+                     |       |        |
| PU5V               |                                           | PUV+                     |       |        |
|                    |                                           |                          |       |        |
|                    |                                           |                          |       |        |
|                    |                                           |                          |       |        |
|                    |                                           |                          |       |        |
|                    |                                           |                          |       |        |
|                    |                                           |                          |       |        |
|                    |                                           |                          |       |        |
|                    |                                           |                          |       |        |


<sup>\*</sup>For exact stock range availability and volume uncut pricing please refer to our NLS Finished Stock Lens Catalogue or see online - www.norville.co.uk

#### POLYCARB PRE-TINTED






#### POLYCARB SINGLE VISION Transitions





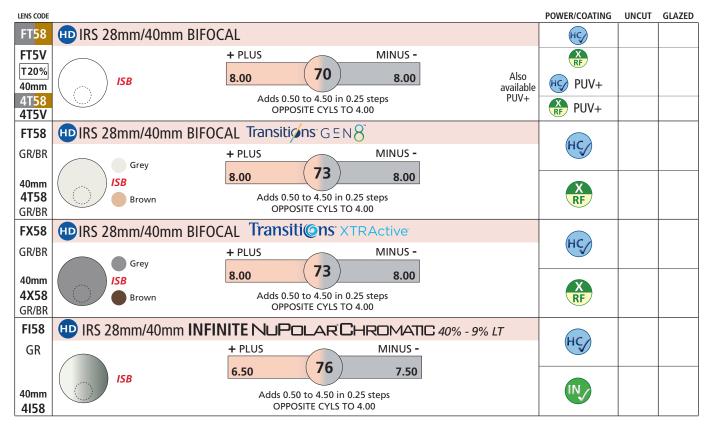
#### POLYCARB **POLARISED** SINGLE VISION



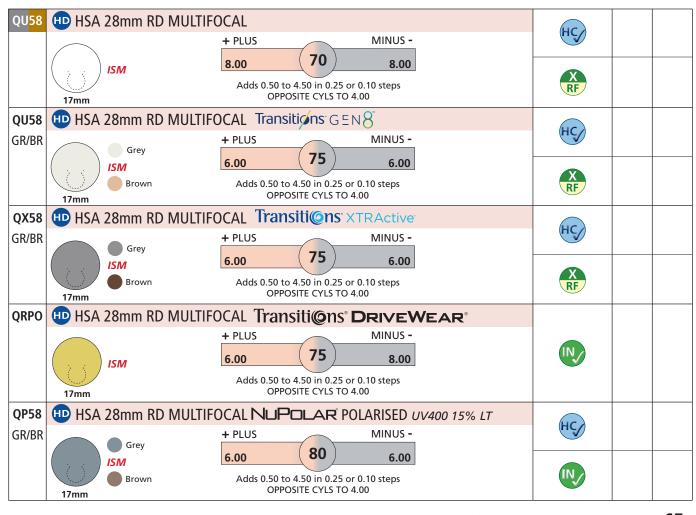




#### POLYCARB SPORTOR-SV (HD)



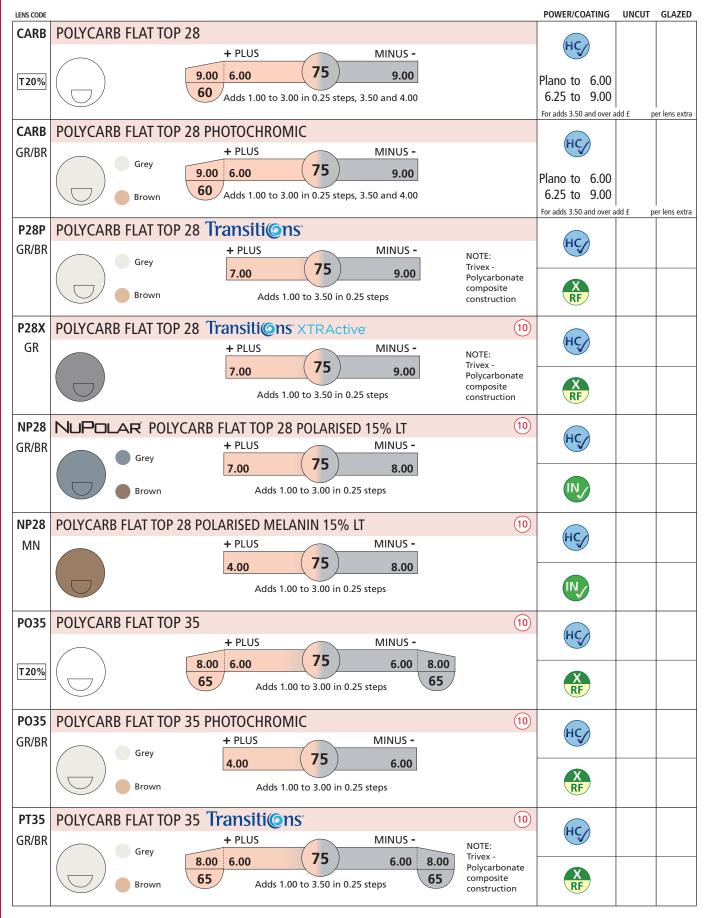




The **SPORTOR** Rx range is confirmed on +8.00 Base lens wraps. Should +6.00 base be sufficiently curved this will then have the effect of **reducing** the available plus range by 2.00D but **increasing** the minus availability by a further 2.00D.

<sup>\*</sup> All SPORTOR lens forms also available as S.E.P. Atoral design central 50mm with free-form edge blend to reduce substance.

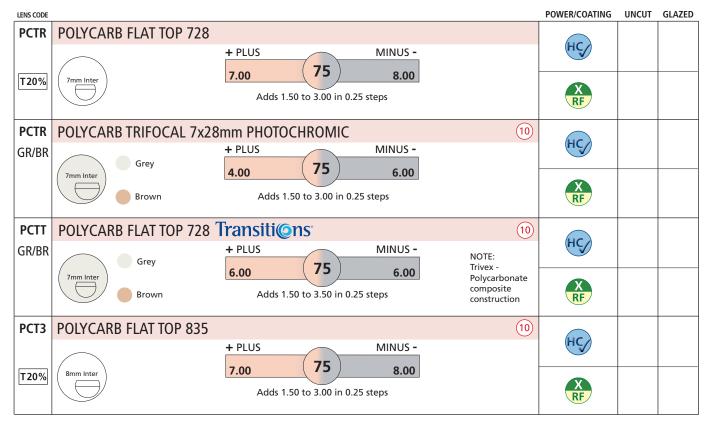




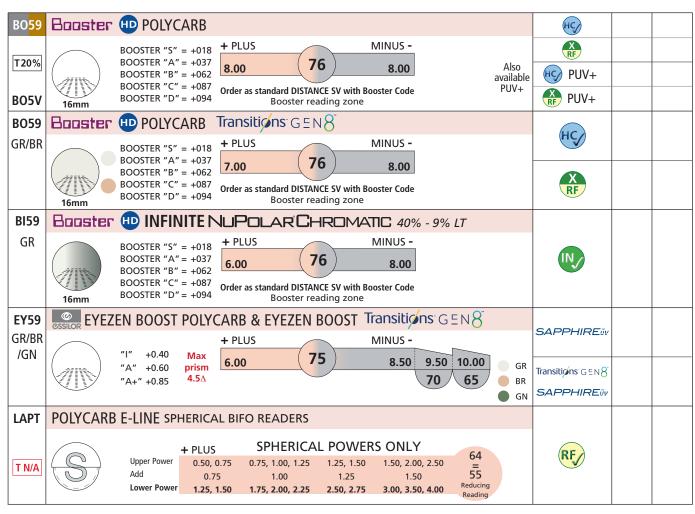

#### POLYCARB HD HSA 28mm RD MULTIFOCAL






#### POLYCARB BIFOCALS



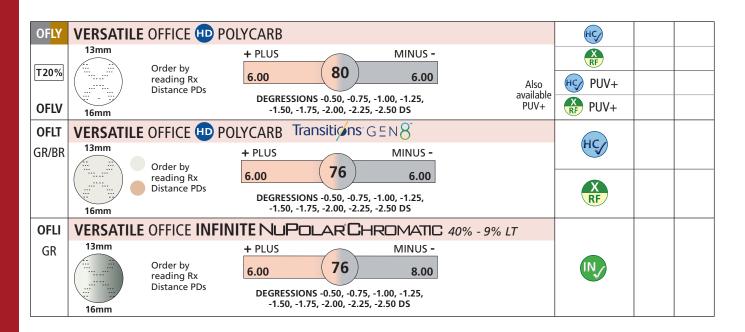




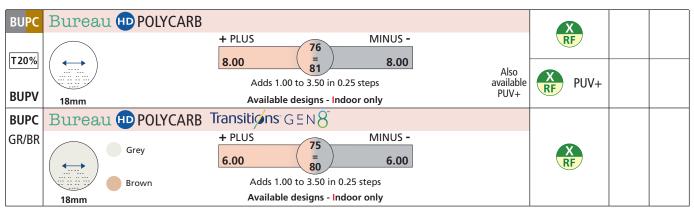

#### POLYCARB TRIFOCALS



#### POLYCARB HD ENHANCED NEAR





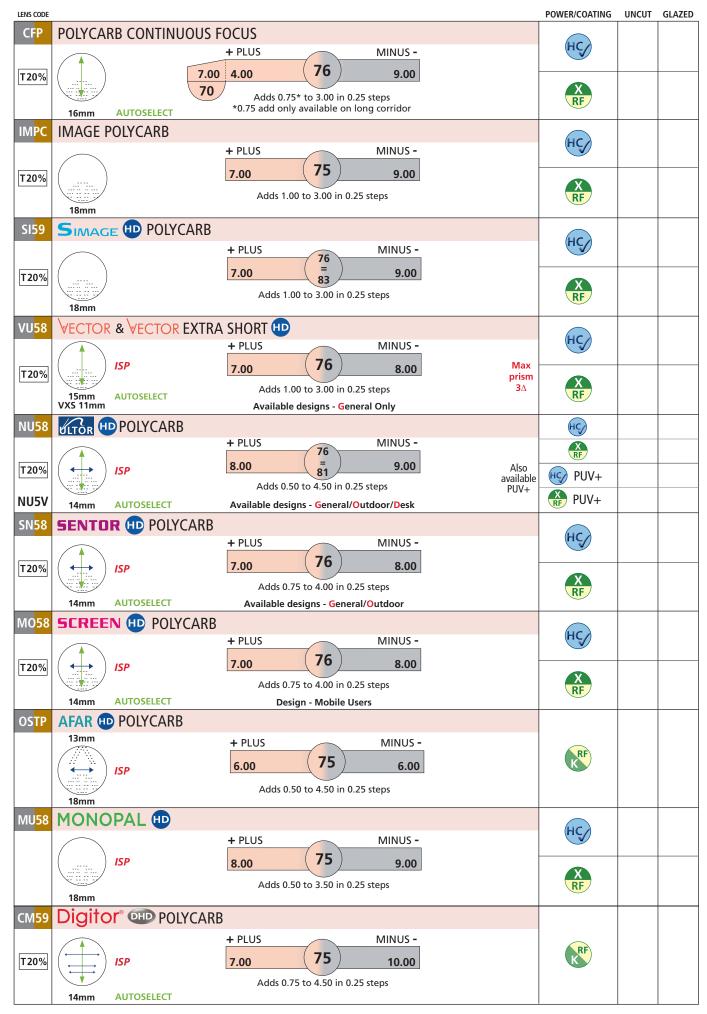




| LENS CODE |                     |        |    |         | POWER/COATING | UNCUT | GLAZED |
|-----------|---------------------|--------|----|---------|---------------|-------|--------|
| OUTP      | AFAR-SV HD POLYCARB |        |    |         |               |       |        |
|           | 13mm                | + PLUS |    | MINUS - | RE            |       |        |
|           |                     | 6.00   | 75 | 6.00    | KRF           |       |        |
|           |                     |        |    |         |               |       |        |
|           |                     |        |    |         |               |       |        |
|           |                     |        |    |         |               |       |        |
|           |                     |        |    |         |               |       |        |
|           |                     |        |    |         |               |       |        |
|           |                     |        |    |         |               |       |        |
|           |                     |        |    |         |               |       |        |

#### POLYCARB HD DEGRESSIVES

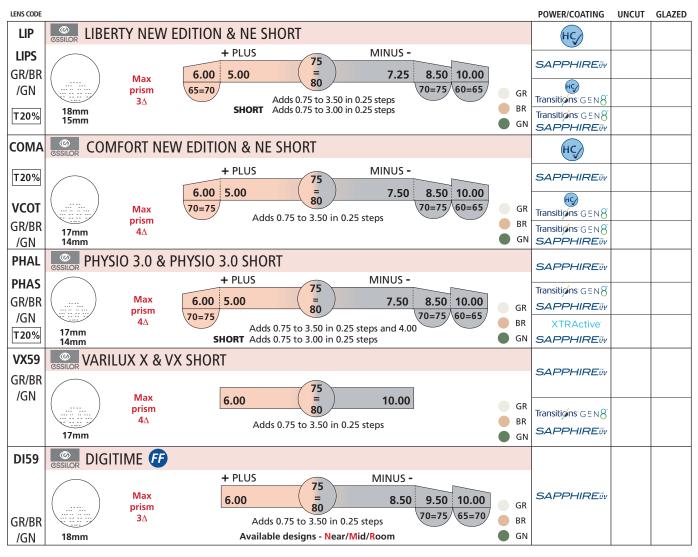


#### POLYCARB HD OCCUPATIONAL PROGRESSIVES




 $\hbox{Overcoloured background } \hbox{indicates } \hbox{\bf Reactolite}^* \hbox{ availability quick guide or see separate catalogue }$ 

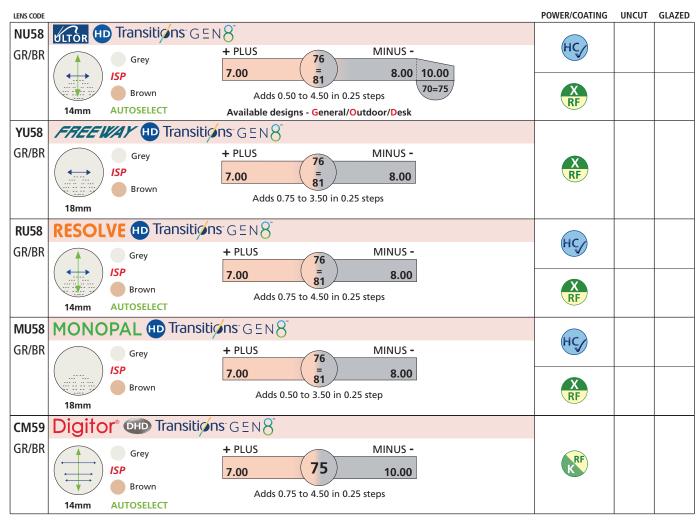



#### POLYCARB HD PROGRESSIVES

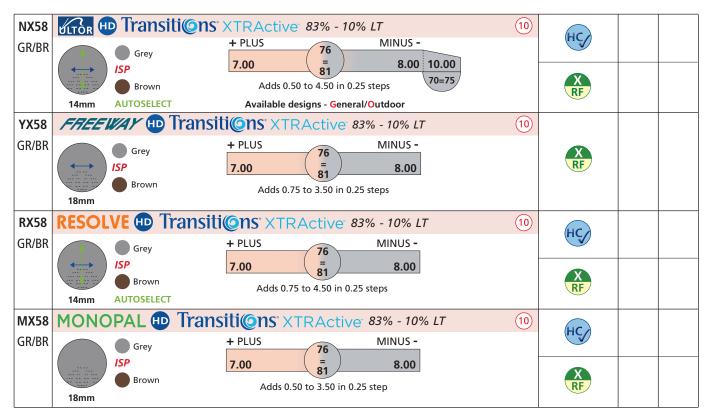





#### POLYCARB PROGRESSIVES



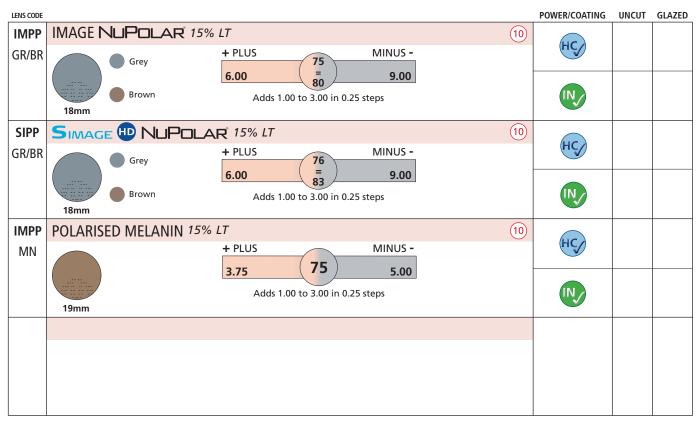




#### POLYCARB PROGRESSIVES Transitions

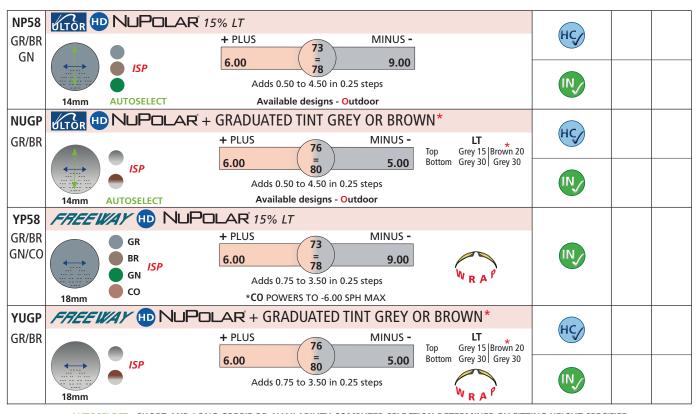







## POLYCARB HD PROGRESSIVES Transitions XTRActive

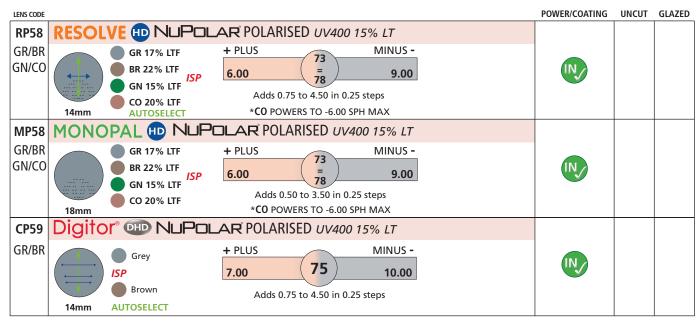




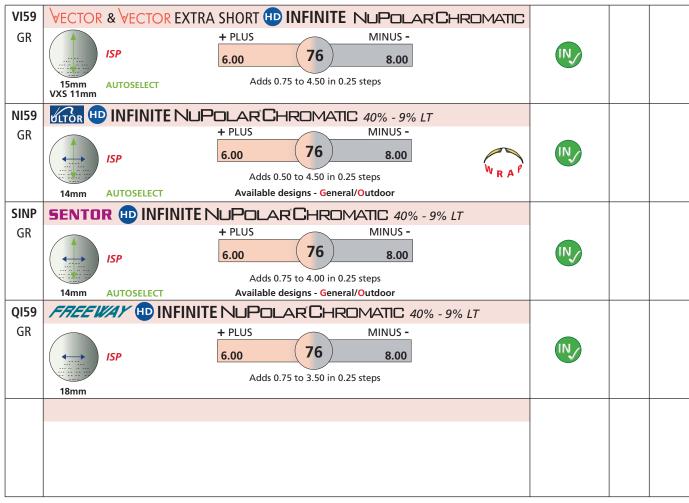

#### POLYCARB POLARISED PROGRESSIVES






## POLYCARB HD POLARISED PROGRESSIVES




AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Variable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.





## POLYCARB HD PHOTOCHROMIC NUPOLAR PROGRESSIVES



AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

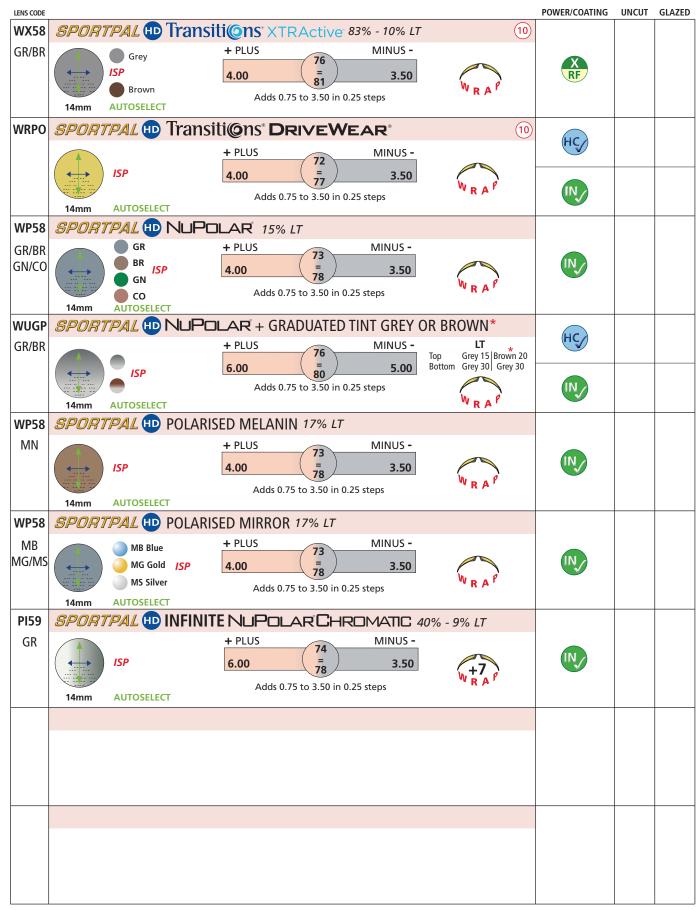
Wariable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.



#### POLYCARB PROGRESSIVES DRIVEWEAR®



| LENS CODE |                                                                                                  | POWER/COATING | UNCUT | GLAZED |
|-----------|--------------------------------------------------------------------------------------------------|---------------|-------|--------|
| IMDN      | IMAGE Transitions DRIVEWEAR 35% - 22% - 12%  + PLUS  MINUS -                                     | HC            |       |        |
|           | 6.00 <b>75</b> 8.00                                                                              |               |       |        |
|           | Adds 1.00 to 3.00 in 0.25 steps 18mm                                                             | IN            |       |        |
| SIPD      | SIMAGE Transitions DRIVEWEAR 35% - 22% - 12%                                                     | HC            |       |        |
|           | + PLUS MINUS - 75 8.00                                                                           |               |       |        |
|           | Adds 1.00 to 3.00 in 0.25 steps                                                                  | IN            |       |        |
| NRPO      | 18mm Transitions DriveWear 35% - 22% - 12%                                                       |               |       |        |
| INKPO     | + PLUS MINUS -                                                                                   |               |       |        |
|           | 6.00 72 8.00                                                                                     | IN            |       |        |
|           | Adds 0.50 to 4.50 in 0.25 steps                                                                  |               |       |        |
| YRPO      | 14mm AUTOSELECT Available designs - Outdoor  FREEWAY ID Transitions DRIVEWEAR 35% - 22% - 12% 10 |               |       |        |
|           | + PLUS MINUS -                                                                                   |               |       |        |
|           | 6.00 = 8.00                                                                                      |               |       |        |
|           | Adds 0.75 to 3.50 in 0.25 steps  18mm                                                            |               |       |        |
| RRPO      | RESOLVE Transitions DriveWear 35% - 22% - 12% 10                                                 | HC            |       |        |
|           | + PLUS MINUS -                                                                                   |               |       |        |
|           | Adds 0.75 to 4.50 in 0.25 steps                                                                  | IN            |       |        |
|           | 14mm AUTOSELECT                                                                                  |               |       |        |
| MRPO      | MONOPAL Transitions DRIVEWEAR 35% - 22% - 12% 10 + PLUS MINUS -                                  | HC            |       |        |
|           | 6.00 = 8.00                                                                                      |               |       |        |
|           | Adds 0.50 to 3.50 in 0.25 steps                                                                  | IN            |       |        |
| CD59      | Digitor OHD Transitions DRIVEWEAR 35% - 22% - 12%                                                |               |       |        |
|           | + PLUS MINUS -                                                                                   |               |       |        |
|           | DSM 8.00 6.00 75 9.75 10.00                                                                      |               |       |        |
|           | 70 Adds 0.75 to 4.50 in 0.25 steps  14mm AUTOSELECT                                              |               |       |        |
|           |                                                                                                  |               |       |        |
|           |                                                                                                  |               |       |        |
|           |                                                                                                  |               |       |        |
|           |                                                                                                  |               |       |        |
|           |                                                                                                  |               |       |        |
|           |                                                                                                  |               |       |        |
|           |                                                                                                  |               |       |        |
|           |                                                                                                  |               |       |        |


AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Variable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.



#### POLYCARB SPORTPAL HD PROGRESSIVES





AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Wariable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.

The **SPORTPAL** Rx range is confirmed on +8.00 Base lens wraps. Should +6.00 base be sufficiently curved this will then have the effect of **reducing** the available plus range by 2.00D but **increasing** the minus availability by a further 2.00D.

**XXL** - Need a larger diameter HD Progressive for those oversize Fashion, Sun or Sports frames?

You can add 10mm to the effective diameter by stating XXL next to the HD Progressive or HD SV, additional price see page 136.

\* All SPORTPAL lens forms also available as S.E.P. Atoral design central 50mm with free-form edge blend to reduce substance.









## RESIN LENSES MID INDEX 1.60

**RESIN MR8** 

**RESIN UV410** 

**RESIN PRE-TINT** 

Reactolite®

Transiti@ns<sup>®</sup>

Transitions GEN8

Transitions XTRActive

**NuPolar** 

CLEAR 1.60 UV410
PRODUCTS CODED UV410

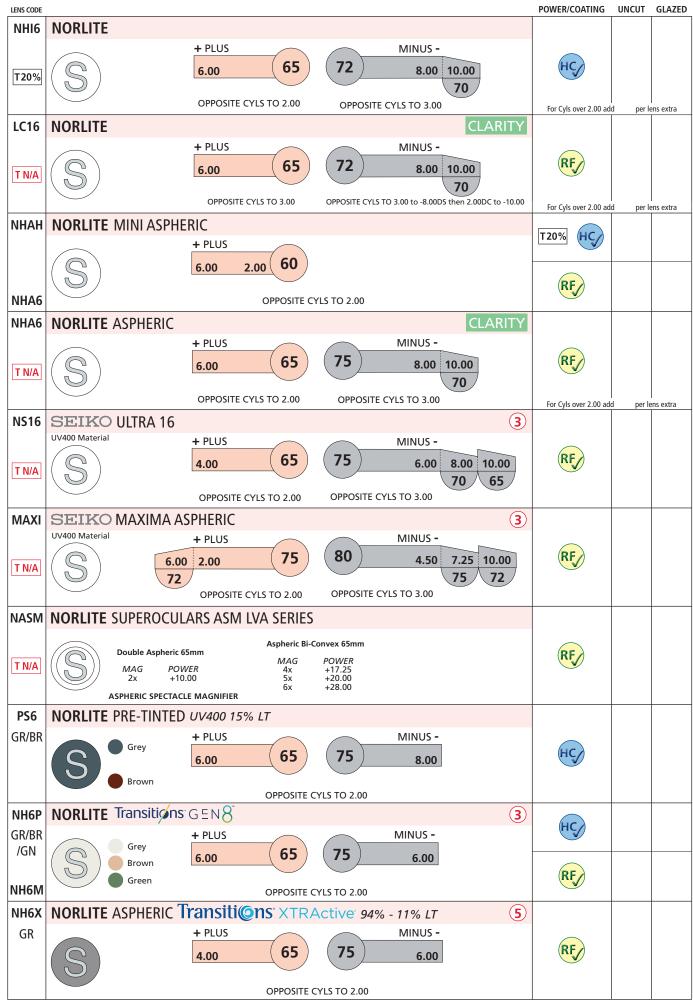
1.6

Index MR8 42

**Abbe** 

1.3g/cm<sup>3</sup>

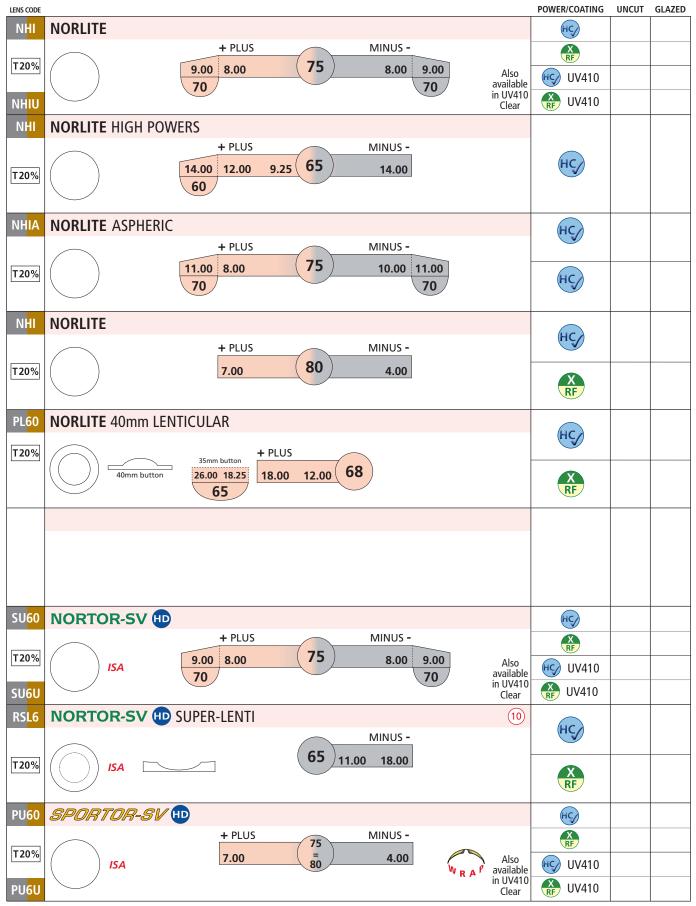
**Density** 


395nm

UV



#### RESIN SINGLE VISION FINISHED STOCK








#### **RESIN SINGLE VISION**

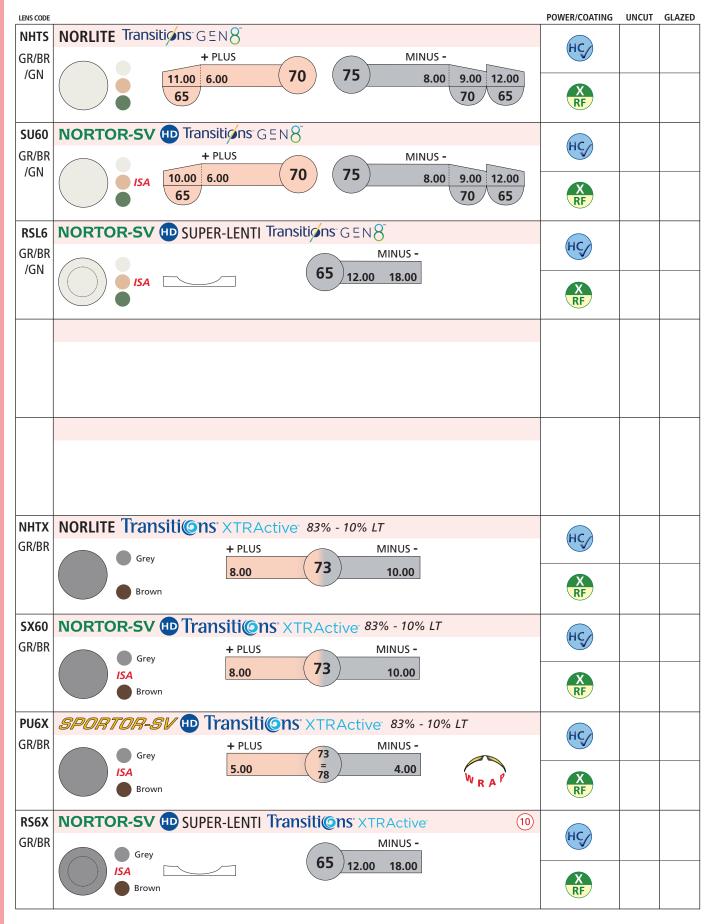




Overcoloured background indicates **Reactolite**® availability quick guide or see separate catalogue

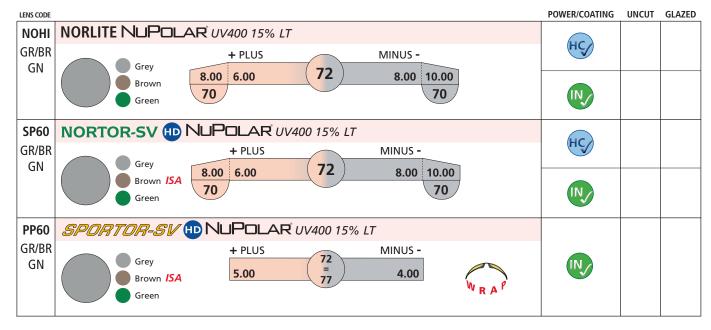


#### **RESIN SINGLE VISION - CONTRAST FILTERS**

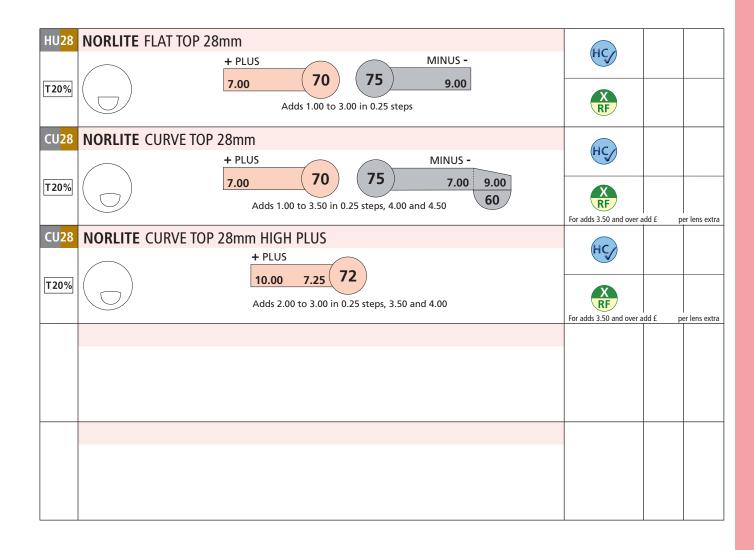



| LENS CODE |                                                   | POWER/COATING | UNCUT | GLAZED |
|-----------|---------------------------------------------------|---------------|-------|--------|
| NCNS      | NORLITE NEO A1 CONTRAST UV400:580B 82% LT         | l (inc)       |       |        |
|           | + PLUS MINUS -                                    | HC            |       |        |
| T20%      | 8.00 (75) 10.00                                   |               |       |        |
| 120 /0    |                                                   | X<br>RF       |       |        |
|           | OPPOSITE CYLS TO 2.00                             |               |       |        |
| NUNL      | NORTOR-SV (ID) NEO A1 CONTRAST UV400:580B 82% LT  |               |       |        |
|           | + PLUS MINUS -                                    | HC            |       |        |
| T20%      | 15A 8.00 (75) 8.00                                |               |       |        |
| 12070     |                                                   | X<br>RF       |       |        |
|           |                                                   |               |       |        |
| PUNL      | SPORTOR-SV HD NEO A1 CONTRAST UV400:580B 82% LT   | (HC)          |       |        |
|           | + PLUS MINUS -                                    | HC            |       |        |
| T20%      | 15A 4.00 = 4.00                                   |               |       |        |
|           | WRAP                                              | X             |       |        |
|           |                                                   |               |       |        |
| NHNC      | NORLITE NEO A2 CONTRAST UV400:580B 72% LT         | HC            |       |        |
|           | + PLUS MINUS -                                    |               |       |        |
| T20%      | 8.00 (75) 10.00                                   |               |       |        |
|           |                                                   | X<br>RF       |       |        |
|           | OPPOSITE CYLS TO 2.00                             |               |       |        |
| NUNE      | NORTOR-SV (10) NEO A2 CONTRAST UV400:580B 72% LT  | HC            |       |        |
|           | + PLUS MINUS -                                    |               |       |        |
| T20%      | 15A 8.00 75 8.00                                  |               |       |        |
|           |                                                   | RF            |       |        |
| DUNE      | COORTON CIVIN NEO A2 CONTRACT LIVADOLEGOD 7200 AT |               |       |        |
| PUNE      | SPORTOR-SV (ID) NEO A2 CONTRAST UV400:580B 72% LT | HC            |       |        |
|           | + PLUS MINUS -                                    |               |       |        |
| T20%      | 15A 4.00 = 4.00                                   | X             |       |        |
|           | W R A                                             | RF            |       |        |
| EAGE      | EAGLE TINT UV410 BROWN 47% LT                     |               |       |        |
| EAGO      | + PLUS MINUS -                                    | HC            |       |        |
| [         | 00                                                |               |       |        |
|           | 6.00 80 6.00                                      | X             |       |        |
|           |                                                   | RF            |       |        |
| SU60      | NORTOR-SV (ID) EAGLE TINT UV410 BROWN 47% LT      |               |       |        |
| ET        | + PLUS MINUS -                                    | HC            |       |        |
|           | 600 80 600                                        |               |       |        |
|           | 15A 6.00 6.00                                     | X             |       |        |
|           |                                                   | RF            |       |        |
| PU60      | SPORTOR-SV IID EAGLE TINT UV410 BROWN 47% LT      |               |       |        |
| ET        | + PLUS MINUS -                                    | HC            |       |        |
| "         | 400 = 400                                         |               |       |        |
|           | 15A 4.00 W R A P                                  | X             |       |        |
|           |                                                   | RF            |       |        |
|           |                                                   | l .           |       |        |

## 1.60

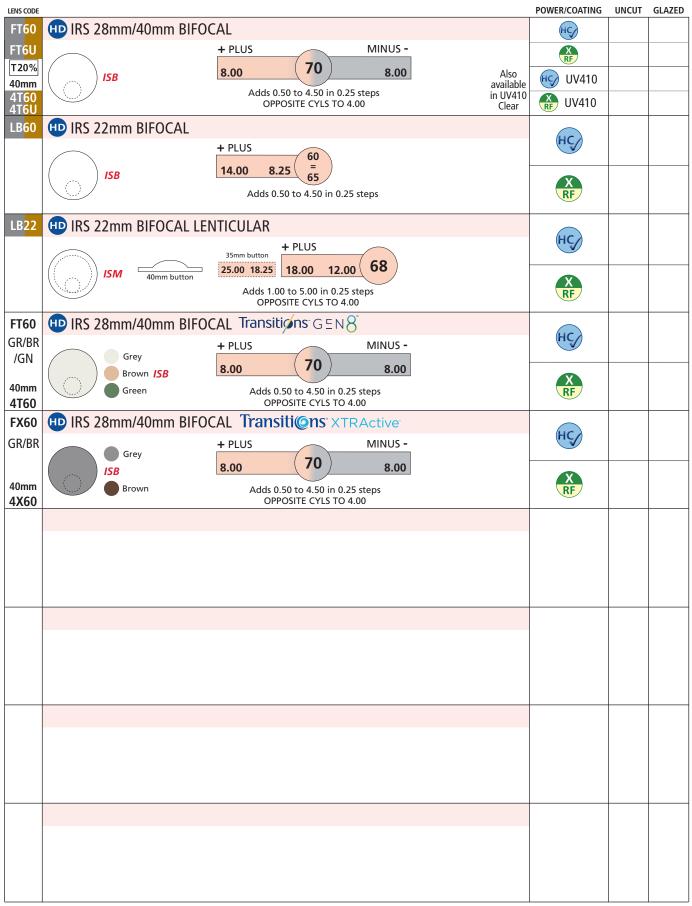

#### RESIN SINGLE VISION Transitions







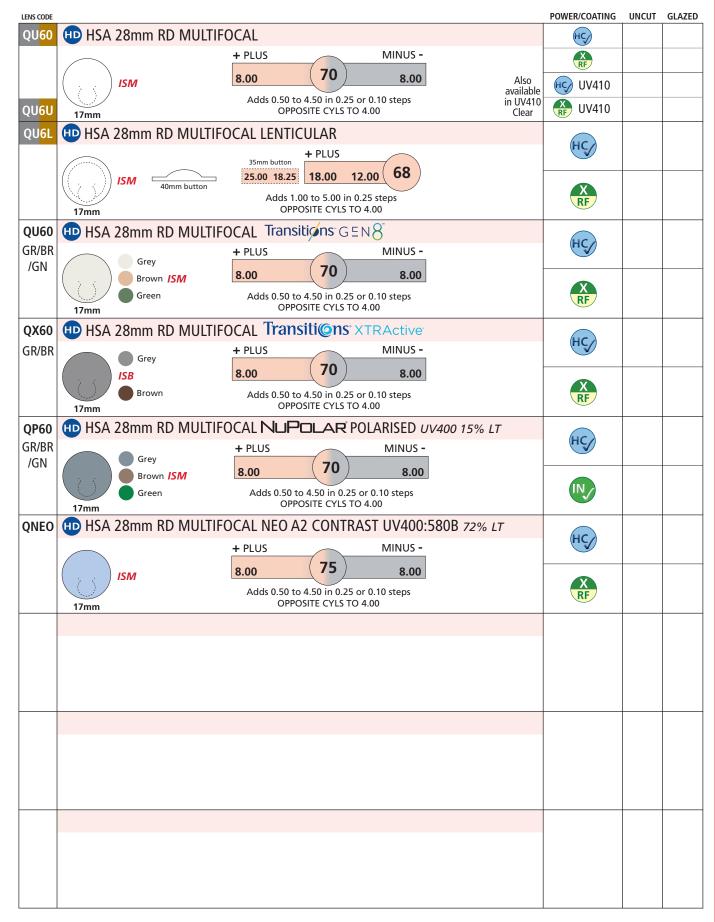

#### **RESIN POLARISED SINGLE VISION**




#### **RESIN BIFOCALS**

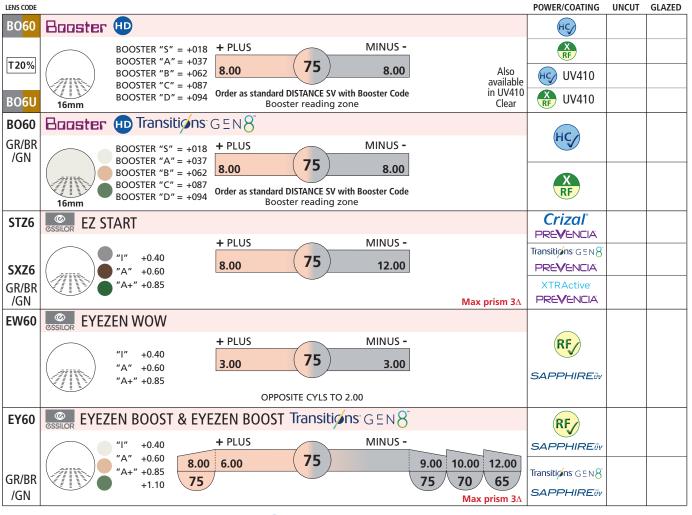








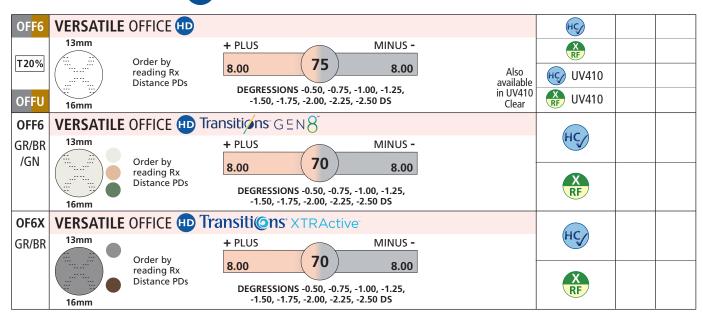

Overcoloured background indicates **Reactolite**® availability quick guide or see separate catalogue




## RESIN HD HSA 28mm RD MULTIFOCAL

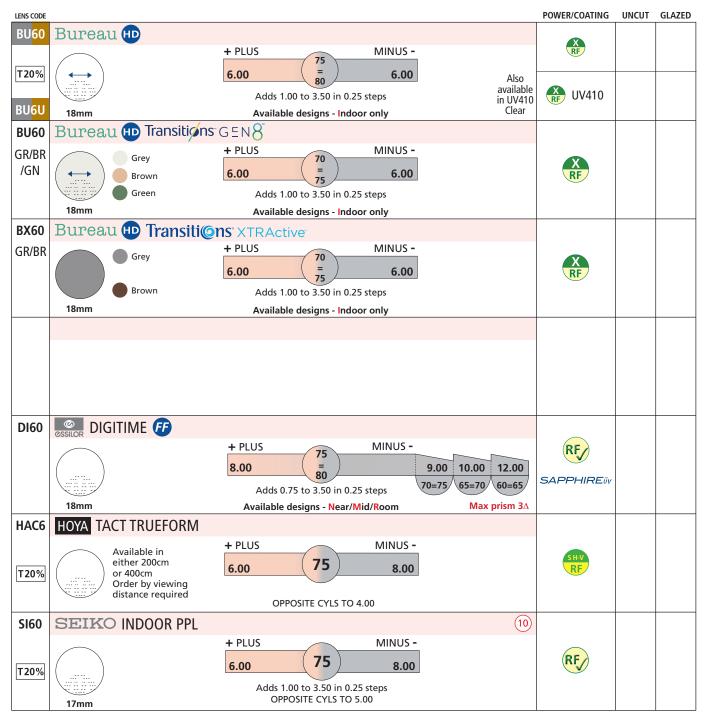




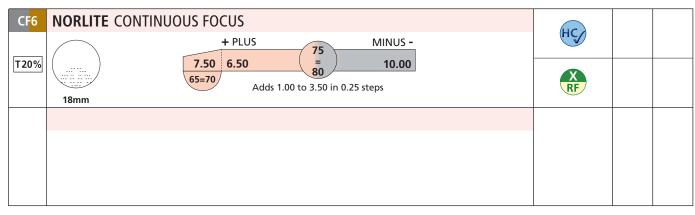





## RESIN HD NIGHT MYOPIA ZONE




#### RESIN HD DEGRESSIVES (ENHANCED NEAR VISION)



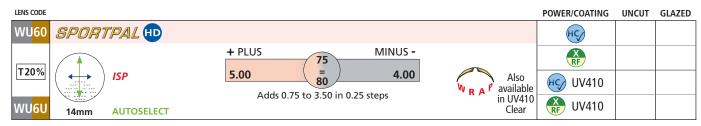



#### **RESIN OCCUPATIONAL PROGRESSIVES**

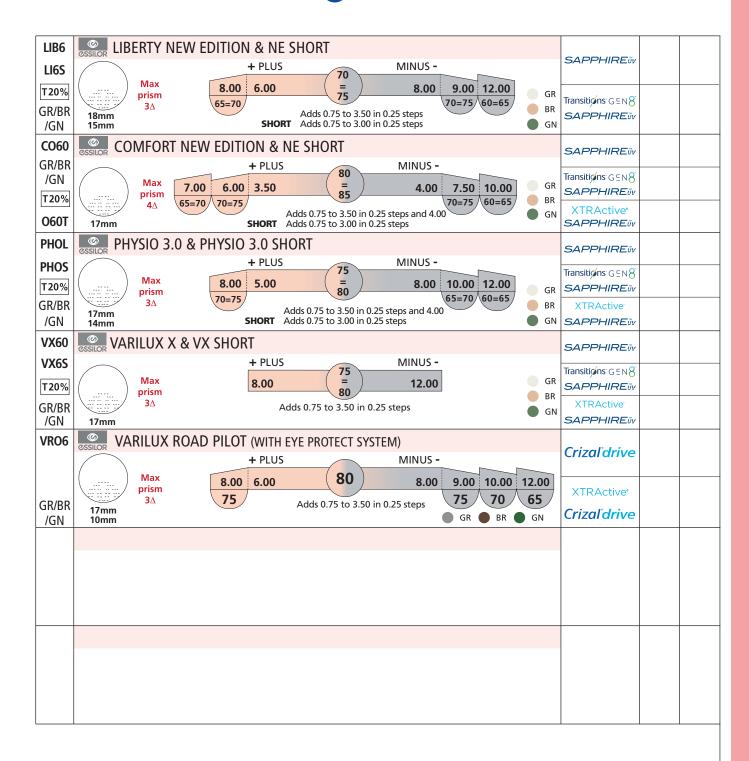


#### **RESIN PROGRESSIVES**



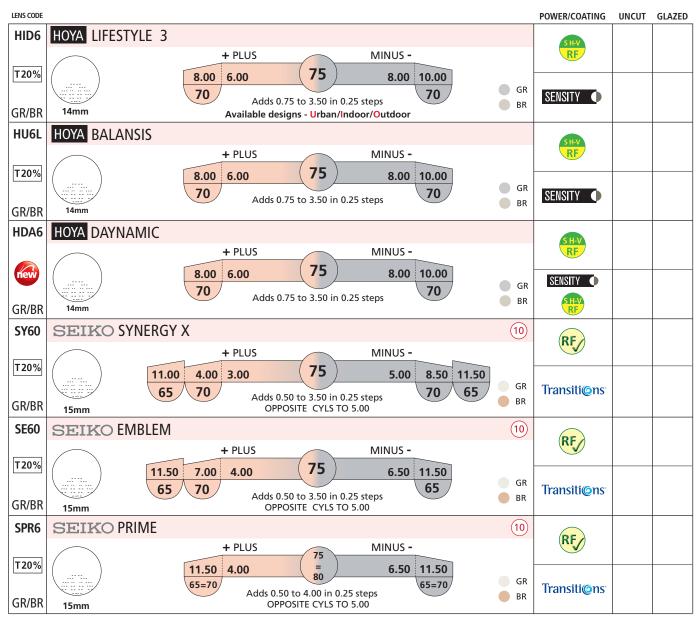




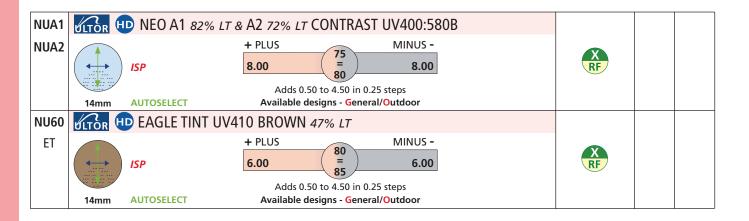


| LENS CODE          |                  |                       |                   |                                              |         |                          |              | POWER/COATING  | UNCUT | GLAZED |
|--------------------|------------------|-----------------------|-------------------|----------------------------------------------|---------|--------------------------|--------------|----------------|-------|--------|
| VU <mark>60</mark> | <b>∀ECTO</b> R   | & <b>VECTOR</b> EXTRA |                   |                                              |         |                          |              | HC             |       |        |
| T200/              | 1                | 160                   | + PLUS            | MINUS                                        | -       |                          |              | X<br>RF        |       |        |
| T20%               |                  | ISP                   | 7.00              | 75 8.00                                      |         | Max<br>prism Al<br>avail |              | HC UV410       |       |        |
| VU <mark>6U</mark> | 15mm<br>VXS 11mm | AUTOSELECT            |                   | o 3.50 in 0.25 steps<br>signs - General Only |         | 3∆ avail<br>in U\<br>Cle | /410         | X UV410        |       |        |
| NU60               | ULTOR HI         |                       | Available de      | signs - General Only                         |         |                          |              | HC             |       |        |
|                    | OLIOR            |                       | + PLUS            | 75 MINUS                                     | _       |                          |              | X              |       |        |
| T20%               |                  | ISP                   | 8.00              |                                              | 10.00   | Al                       | 50           |                |       |        |
| NUCLI              |                  |                       | Adds 0.50 to      | o 4.50 in 0.25 steps                         | 70=75   | avail<br>in U\           | /410         |                |       |        |
| NU6U               | 14mm             | AUTOSELECT            | Available designs | - General/Outdoor/Desk                       | :       | Cle                      | ear          | X UV410        |       |        |
| NU <mark>60</mark> | ULTOR HI         | HIGH PLUS             | + PLUS            | _                                            |         |                          |              | HC             |       |        |
| T200/              |                  | 150                   |                   | 65                                           |         |                          |              |                |       |        |
| T20%               |                  | ISP                   | 10.00 8.25 \      | <b>70</b> o 4.50 in 0.25 steps               |         |                          |              | X              |       |        |
|                    | 14mm             | AUTOSELECT            |                   | - General/Outdoor/Desk                       |         |                          |              | RF             |       |        |
| SN <mark>60</mark> | SENTO            | R HD                  |                   |                                              |         |                          |              | HC             |       |        |
|                    | <b>A</b>         |                       | + PLUS            | 75 MINUS                                     | -       |                          |              | X              |       |        |
| T20%               |                  | ISP                   | 8.00              | 80 8.00                                      | 0 10.00 | Al                       |              | HC UV410       |       |        |
| SN6U               |                  |                       |                   | to 4.00 in 0.25 steps                        | 70=75   | avail<br>in U\<br>Cle    | /410         | X UV410        |       |        |
| MO60               | 14mm<br>SCREE    | AUTOSELECT<br>N HD    | Available desi    | gns - General/Outdoor                        |         | CIE                      | aı           |                |       |        |
| IVIOUU             | Jenez            |                       | + PLUS            | MINUS                                        | -       |                          |              | HC)            |       |        |
| T20%               |                  | ISP                   | 7.00              | 76 ) 8.00                                    | )       | Al                       | so           | RF LIVAGO      |       |        |
|                    |                  |                       | Adds 0.75 t       | o 4.00 in 0.25 steps                         | _       | avail<br>in U\           | able         | UV410          |       |        |
| MO6U               | 14mm             | AUTOSELECT            | Design            | - Mobile Users                               |         | Cle                      |              | X UV410        |       |        |
| YU <mark>60</mark> | FREEW            | AY HD                 | · DILIC           | MAINILIC                                     |         |                          |              | X              |       |        |
| T20%               |                  |                       | + PLUS            | 75 MINUS                                     |         |                          |              |                |       |        |
| 120 /6             |                  | ISP                   | 8.00 \            | 80 8.00<br>o 3.50 in 0.25 steps              | 70=75   | Al<br>avai               | able         | X UV410        |       |        |
| YU <mark>6U</mark> | 18mm             |                       | Adds 0.75 (       | 0 3.30 III 0.23 steps                        |         | in U\<br>Cle             |              | RF OV410       |       |        |
| OST6               | AFAR (           | D UV410               |                   |                                              |         |                          |              |                |       |        |
|                    | 13mm             |                       | + PLUS            | MINUS                                        | _       |                          |              | DE             |       |        |
|                    |                  | ISP                   | 8.00              | 75 8.00                                      | 0       |                          |              | KRF            |       |        |
|                    |                  |                       | Adds 0.50 t       | to 4.50 in 0.25 steps                        |         |                          |              |                |       |        |
| RU <mark>60</mark> | 18mm             | VF HD                 |                   |                                              |         |                          |              | HC             |       |        |
| NO O O             | MESOL            |                       | + PLUS            | MINUS                                        | _       |                          |              | X              |       |        |
| T20%               |                  | ISP                   | 8.00              | = 8.00                                       | 0 10.00 | Al                       | so           | _              |       |        |
|                    |                  |                       |                   | o 4.50 in 0.25 steps                         | 70=75   | avai<br>in U\            | able<br>/410 | UV410          |       |        |
| RU6U               | 14mm             | AUTOSELECT            |                   | •                                            |         | Cle                      | ear          | <b>№</b> UV410 |       |        |
| CM <sub>60</sub>   | Digito           | OHD)                  | · BLUG            |                                              |         |                          |              |                |       |        |
|                    |                  |                       | + PLUS            | 75 MINUS                                     |         |                          |              | RF             |       |        |
| T20%               |                  | ISP                   | 8.00              | 12.00                                        | J       |                          |              |                |       |        |
|                    | 14mm             | AUTOSELECT            | Aads 0./5 t       | o 4.50 in 0.25 steps                         |         |                          |              |                |       |        |
| PG <mark>60</mark> | PARAG            | ON OHD                |                   |                                              |         |                          |              |                |       |        |
|                    |                  |                       | + PLUS            | MINUS                                        | -       |                          |              | Ann            |       |        |
| T20%               |                  | ISP                   | 7.00              | 75 ) 12.00                                   | )       |                          |              | BA             |       |        |
|                    | 12:              | AUTOSELECT            |                   | o 4.00 in 0.25 steps                         | _       |                          |              |                |       |        |
|                    | 12mm             | AUTOSELECT            | Available designs | - General/Outdoor/Desk                       | (       |                          |              |                |       |        |








## RESIN F PROGRESSIVES




#### RESIN PROGRESSIVES





## RESIN HD PROGRESSIVES





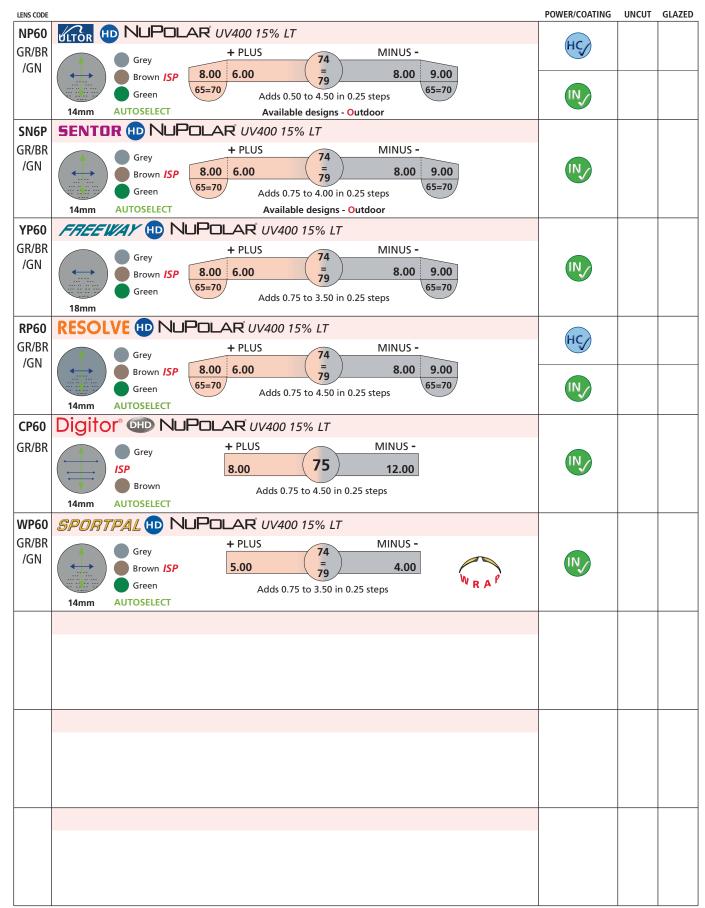


AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Variable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.



## RESIN HD PROGRESSIVES Transitions




| LENS CODE     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                           |      | POWER/COATING | UNCUT | GLAZED |
|---------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------|------|---------------|-------|--------|
| NU6X          | ULTOR HD Tr    | ransiti@ns <sup>®</sup> X <sup>®</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TRActive"                                 |                           |      |               |       |        |
| GR/BR         |                | Grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | + PLUS 73                                 | MINUS -                   |      | HC            |       |        |
|               | <b>←</b> ISP   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.00                                      | 10.00                     |      |               |       |        |
|               | <b>•</b> E     | Brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Adds 0.50 to 4.50 in 0.                   | 25 steps                  |      | RF            |       |        |
|               |                | OSELECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Available designs - Gener                 | al/ <mark>O</mark> utdoor |      |               |       |        |
| SNX6          | SENTOR (1      | D Transiti@n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |                           |      | HC            |       |        |
| GR/BR         |                | Grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | + PLUS 73                                 | MINUS -                   |      |               |       |        |
|               | ISP            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.00                                      | 10.00                     |      |               |       |        |
|               |                | Brown<br>OSELECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Adds 0.75 to 4.00 in 0.                   | •                         |      | RF            |       |        |
| MOVE          |                | Transiti@r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Available designs - Gener                 | al/Outdoor                |      |               |       |        |
| MOX6<br>GR/BR | SLREEN (       | Hansider                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | + PLUS                                    | MINUS -                   |      | HC            |       |        |
| GR/BR         |                | Grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.00                                      | 10.00                     |      |               |       |        |
|               | ISP            | Brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78                                        |                           |      | X             |       |        |
|               |                | OSELECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Adds 0.75 to 4.00 in 0  Design - Mobile U | · ·                       |      | RF            |       |        |
| YU6X          | FREEWAY        | Transition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>©ns</b> ° XTRActive                    |                           |      |               |       |        |
| GR/BR         |                | Grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | + PLUS                                    | MINUS -                   |      |               |       |        |
|               | ← ISP          | dicy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.00                                      | 10.00                     |      | X<br>RF       |       |        |
|               |                | Brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Adds 0.75 to 3.50 in 0.                   |                           |      |               |       |        |
|               | 18mm           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Add3 0.73 to 3.30 iii 0.                  | 23 жерз                   |      |               |       |        |
| RU6X          | <b>RESOLVE</b> | Transiti@                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ns XTRActive                              |                           |      | (1)           |       |        |
| GR/BR         |                | Grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | + PLUS 73                                 | MINUS -                   |      | HC            |       |        |
|               | <b>★</b> ISP   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.00                                      | 10.00                     |      |               |       |        |
|               |                | Brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Adds 0.75 to 4.50 in 0.                   | 25 steps                  |      | RF            |       |        |
|               |                | OSELECT The state of the state | 0 T                                       |                           |      |               |       |        |
| CM6X          | Digitor        | Transiu(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ns & Transiti@ns                          |                           |      |               |       |        |
| GR/BR         |                | Grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | + PLUS                                    | MINUS -                   |      | RF            |       |        |
|               | ISP            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.00 75                                   | 12.00                     |      | K             |       |        |
|               |                | Brown<br>OSELECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Adds 0.75 to 4.50 in 0.                   | 25 steps                  |      |               |       |        |
| WU6X          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>i@ns</b> ° XTRActive                   | 83% - 10% IT              |      |               |       |        |
| GR/BR         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | + PLUS                                    | MINUS -                   |      | HC            |       |        |
| GIVER         | ISP            | Grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.00 =                                    | 4.00                      |      |               |       |        |
|               |                | Brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78<br>Adds 0.75 to 3.50 in 0.             |                           | WRAP | X             |       |        |
|               | 14mm AUTO      | OSELECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Adds 0.75 to 5.50 III 0                   | zo steps                  |      | KF            |       |        |
|               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                           |      |               |       |        |
|               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                           |      |               |       |        |
|               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                           |      |               |       |        |
|               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                           |      |               |       |        |
|               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                           |      |               |       |        |
|               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                           |      |               |       |        |
|               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                           |      |               |       |        |
|               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                           |      |               |       |        |
|               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                           |      |               |       |        |
|               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                           |      |               |       |        |

AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Wariable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.





AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Wariable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.









# RESIN LENSES MID INDEX 1.60

XT16 - HIGHER IMPACT n=1.60

Reactolite®

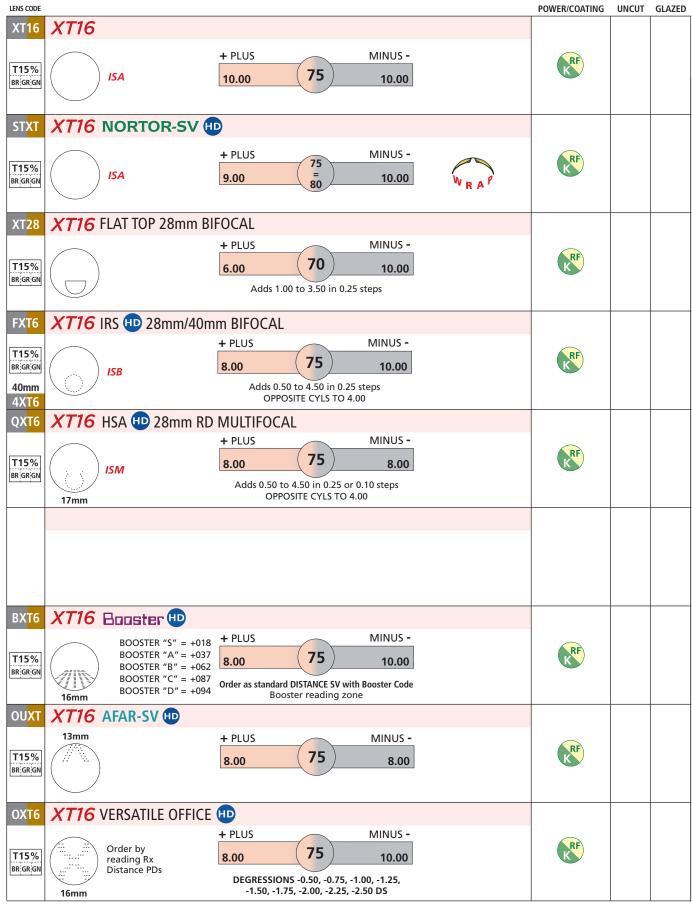
1.597

Index XT16 39

**Abbe** 

1.30g/cm<sup>3</sup>

**Density** 


395nm

UV



## *XT16*

1.60

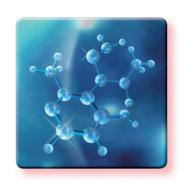


Overcoloured background indicates **Reactolite**® availability quick guide or see separate catalogue

## 1.60

## **XT16**




| LENS CODE          |                                       |                                                                                                 | POWER/COATING | UNCUT | GLAZED |
|--------------------|---------------------------------------|-------------------------------------------------------------------------------------------------|---------------|-------|--------|
| NXT6               | XT16 VITOR HD                         |                                                                                                 |               |       |        |
| T15%<br>BR GR GN   | 15P  14mm AUTOSELECT                  | + PLUS MINUS -  8.00                                                                            | RF            |       |        |
| SXT6               | XT16 SENTOR HD                        |                                                                                                 |               |       |        |
| T15%<br>BR GR GN   | ISP 14mm AUTOSELECT                   | + PLUS MINUS -  8.00                                                                            | RF            |       |        |
| MXT6               | XT16 SCREEN HD                        |                                                                                                 |               |       |        |
| T15%               | 1SP 14mm AUTOSELECT                   | + PLUS MINUS -  8.00 75 10.00  Adds 0.75 to 4.00 in 0.25 steps  Design - Mobile Users           | RF            |       |        |
| BUXT               | XT16 Bureau HD                        |                                                                                                 |               |       |        |
| T15%<br>BR GR GN   | 18mm                                  | + PLUS MINUS -  8.00 75 10.00  Adds 0.75 to 3.50 in 0.25 steps  Available designs - Indoor only | RF            |       |        |
| OXTA               | XT16 AFAR 🕪                           |                                                                                                 |               |       |        |
| T15%<br>BR GR GN   | 13mm<br>ISP                           | + PLUS MINUS -  8.00 75 8.00  Adds 0.50 to 4.50 in 0.25 steps                                   | RF            |       |        |
| NSTX T15% BR GR GN | XT16 NST (1)                          | + PLUS MINUS -  8.00                                                                            | RF            |       |        |
|                    | 14mm AUTOSELECT                       | ·                                                                                               |               |       |        |
| T15% BR GR GN      | XT16 RESOLVE HD  ISP  14mm AUTOSELECT | + PLUS MINUS -  8.00 = 10.00  Adds 0.75 to 4.50 in 0.25 steps                                   | RF            |       |        |
| YXT6               | XT16 FREEWAY HD                       |                                                                                                 |               |       |        |
| T15%<br>BR:GR:GN   | ISP                                   | + PLUS MINUS -  8.00                                                                            | RF            |       |        |
| MOXT T15% BR:GR:GN | XT16 MONOPAL HID ISP  14mm AUTOSELECT | + PLUS MINUS -  8.00                                                                            | RF            |       |        |

AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Variable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.









# RESIN LENSES MID INDEX 1.60

TM PPG INDUSTRIES INC.

Reactolite®

tribrid<sub>™</sub> Transiti@ns<sup>®</sup>

1.596

Index TRIBRID 41

**Abbe** 

1.23g/cm<sup>3</sup>

**Density** 

395nm

UV

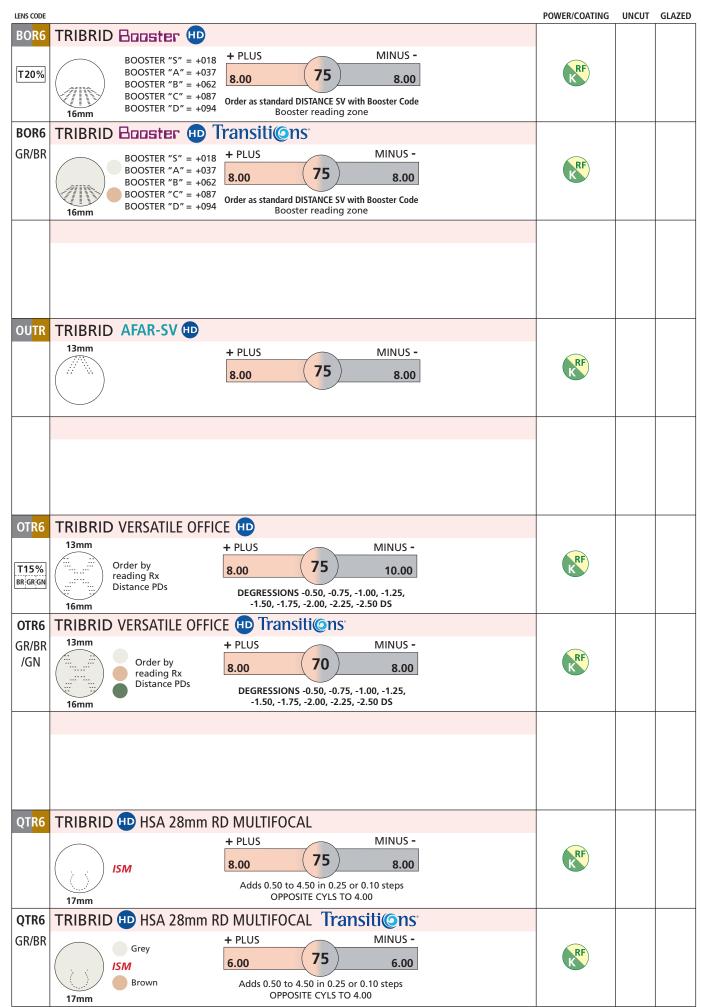


## tribrid™lenses



Tribrid™ lenses are produced using a unique hybrid material technology that is the combination of Trivex® lens material and higher index resins. Abbe value = 41, Density = 1.36 g/cm³

Tribrid lenses are up to 5 times more break resistant than other 1.60 and 1.67 lenses.


\* Impact resistant lenses are neither shatterproof nor unbreakable. Lens processing and coatings may alter the impact resistance of any lens material.

| LENS CODE               | " impact resistant ienses are neitner snatterproot nor unbreakable. Lens processing and coatings may after the impact re | POWER/COATING | GLAZED |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------|--------|
| STRS                    | TRIBRID                                                                                                                  |               |        |
| T N/A                   | + PLUS MINUS - 6.00 8.00  OPPOSITE CYLS TO 2.00                                                                          | RF            |        |
|                         |                                                                                                                          |               |        |
|                         |                                                                                                                          |               |        |
| STR6                    | TRIBRID NORTOR-SV (ID)                                                                                                   |               |        |
| T15%<br>BR GR GN        | + PLUS MINUS - 10.00 9.00 7.00 75 10.00 W R A P                                                                          | RF            |        |
| STR6                    | TRIBRID NORTOR-SV (10) Transiti@ns                                                                                       |               |        |
| GR/BR                   | + PLUS MINUS - 7.00 75 10.00                                                                                             | RF            |        |
| PTR6                    | TRIBRID SPORTOR-SV (10) Transitions                                                                                      |               |        |
| GR/BR                   | # PLUS MINUS -    Second   Final Point                                                                                   | RF            |        |
|                         | TRURBUR 10 //0 RIFOCAL                                                                                                   |               |        |
| FTR6                    | TRIBRID HD IRS 28mm/40mm BIFOCAL                                                                                         |               |        |
| T15% BR GR GN 40mm 4TR6 | + PLUS MINUS -  8.00 75 10.00  Adds 0.50 to 4.50 in 0.25 steps OPPOSITE CYLS TO 4.00                                     | RF            |        |
| FTR6                    | TRIBRID IN IRS 28mm/40mm BIFOCAL Transitions                                                                             |               |        |
| GR/BR                   | + PLUS MINUS -                                                                                                           |               |        |
| 40mm<br>4TR6            | Grey  ISB  Adds 0.50 to 4.50 in 0.25 steps  OPPOSITE CYLS TO 4.00                                                        | K             |        |
|                         |                                                                                                                          |               |        |
|                         |                                                                                                                          |               |        |
|                         |                                                                                                                          |               |        |
|                         |                                                                                                                          |               |        |

<sup>\*</sup>For exact stock range availability and volume uncut pricing please refer to our NLS Finished Stock Lens Catalogue or see online - www.norville.co.uk



## tribrid<sup>™</sup> lenses





## tribrid<sup>™</sup> lenses



| LENS CODE          |                          |                                          | POWER/COATING | UNCUT | GLAZED |
|--------------------|--------------------------|------------------------------------------|---------------|-------|--------|
| BTR6               | TRIBRID Bureau 🕕         |                                          |               |       |        |
|                    |                          | + PLUS MINUS -                           |               |       |        |
| T15%               | ( •··· )                 | 8.00 (75)                                | KRF           |       |        |
| BR GR GN           |                          | Adds 0.75 to 3.50 in 0.25 steps          |               |       |        |
|                    | 18mm                     | Available designs - Indoor only          |               |       |        |
| NTR6               | TRIBRID VITOR HD         |                                          |               |       |        |
|                    |                          | + PLUS MINUS -                           | ( PE          |       |        |
| T15%               | ( SP                     | 8.00 (75) 10.00                          | KRF           |       |        |
| BR GR GN           |                          | Adds 0.50 to 4.50 in 0.25 steps          |               |       |        |
|                    | 14mm AUTOSELECT          | Available designs - General/Outdoor/Desk |               |       |        |
| SRN6               | TRIBRID <b>SENTOR</b> HD |                                          |               |       |        |
|                    |                          | + PLUS MINUS -                           |               |       |        |
| T15%               | ( SP                     | 8.00 (75)                                | KRF           |       |        |
| BR GR GN           |                          | Adds 0.75 to 4.00 in 0.25 steps          |               |       |        |
|                    | 14mm AUTOSELECT          | Available designs - General/Outdoor      |               |       |        |
| MR <mark>N6</mark> | TRIBRID <b>SCREEN</b> HD |                                          |               |       |        |
|                    |                          | + PLUS MINUS -                           |               |       |        |
| T15%               | ( ISP                    | 8.00 (75)                                | KRF           |       |        |
| BR GR GN           |                          | Adds 0.75 to 4.00 in 0.25 steps          |               |       |        |
|                    | 14mm AUTOSELECT          | Design - Mobile Users                    |               |       |        |
| YTR6               | TRIBRID FREEWAY          |                                          |               |       |        |
|                    |                          | + PLUS MINUS -                           |               |       |        |
| T15%               | ( ← ) ISP                | 8.00 (75)                                | KRF           |       |        |
| BR GR GN           |                          | Adds 0.75 to 3.50 in 0.25 steps          |               |       |        |
|                    | 18mm                     |                                          |               |       |        |
| OSTR               | TRIBRID AFAR HD          |                                          |               |       |        |
|                    | 13mm                     | + PLUS MINUS -                           |               |       |        |
| T15%               |                          | 8.00 (75) 8.00                           | RF            |       |        |
| BR GR GN           | ISP                      |                                          |               |       |        |
|                    | 18mm                     | Adds 0.50 to 4.50 in 0.25 steps          |               |       |        |
| NS <mark>R6</mark> | TRIBRID NST IID          |                                          |               |       |        |
|                    |                          | + PLUS MINUS -                           |               |       |        |
| T15%               | ( ISP                    | 8.00 (5) 10.00                           | RF<br>K       |       |        |
| BR GR GN           |                          | Adds 0.75 to 3.50 in 0.25 steps          |               |       |        |
|                    | 14mm AUTOSELECT          | Adus 0.75 to 3.50 iii 0.25 steps         |               |       |        |
| RTR6               | TRIBRID RESOLVE HD       |                                          |               |       |        |
|                    |                          | + PLUS MINUS -                           |               |       |        |
| T15%               | ( ISP                    | 8.00 (5) 10.00                           | RF            |       |        |
| BR GR GN           |                          | 80                                       |               |       |        |
|                    | 14mm AUTOSELECT          | Adds 0.75 to 4.50 in 0.25 steps          |               |       |        |
| MOTR               | TRIBRID MONOPAL          | D                                        |               |       |        |
|                    |                          | + PLUS MINUS -                           |               |       |        |
| T15%               | ISP                      | 75                                       | RF            |       |        |
| BR GR GN           |                          | 80                                       |               |       |        |
|                    | 14mm AUTOSELECT          | Adds 0.75 to 3.50 in 0.25 steps          |               |       |        |
| $\overline{}$      |                          |                                          |               |       |        |

AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Variable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.



## tribrid™ lenses

| LENS CODE     |                                                                                          | POWER/COATING | UNCUT | GLAZED |
|---------------|------------------------------------------------------------------------------------------|---------------|-------|--------|
| NTR6          | TRIBRID Transitions                                                                      |               |       |        |
| GR/BR         | + PLUS MINUS -                                                                           | DE            |       |        |
|               | 6.00 (75) 10.00                                                                          | RF            |       |        |
|               | Brown Adds 0.50 to 4.50 in 0.25 steps                                                    |               |       |        |
| CDNC          | 14mm AUTOSELECT Available designs - General/Outdoor/Desk  TRIBRID SENTOR HD Transitions* |               |       |        |
| SRN6<br>GR/BR | + PLUS MINUS -                                                                           |               |       |        |
| GN/BN         | Grey 6.00 (75) 10.00                                                                     | RF            |       |        |
|               | Denum Province                                                                           |               |       |        |
|               | Adds 0.75 to 4.00 in 0.25 steps  14mm AUTOSELECT Available designs - General/Outdoor     |               |       |        |
| MRN6          | TRIBRID SCREEN (ID) Transitions                                                          |               |       |        |
| GR/BR         | Grey + PLUS MINUS -                                                                      |               |       |        |
|               | ( 50 (75 ) 10.00                                                                         | RF            |       |        |
|               | Adds 0.75 to 4.00 in 0.25 steps                                                          |               |       |        |
|               | 14mm AUTOSELECT Design - Mobile Users                                                    |               |       |        |
| YTR6          | TRIBRID FREEWAY ID Transitions                                                           |               |       |        |
| GR/BR         | Grey + PLUS MINUS -                                                                      | RF            |       |        |
|               | 6.00 (75) 10.00                                                                          | K             |       |        |
|               | Brown Adds 0.75 to 3.50 in 0.25 steps                                                    |               |       |        |
| RTR6          | TRIBRID RESOLVE Transitions                                                              |               |       |        |
| GR/BR         | Grey + PLUS MINUS -                                                                      |               |       |        |
|               | 6.00 (75) 10.00                                                                          | RF            |       |        |
|               | Adds 0.75 to 4.50 in 0.25 steps                                                          |               |       |        |
|               | 14mm AUTOSELECT                                                                          |               |       |        |
| WRT6          | TRIBRID SPORTPAL Transitions                                                             |               |       |        |
| GR/BR         | + PLUS MINUS -                                                                           | RF            |       |        |
|               | 6.00 = 6.00                                                                              | K             |       |        |
|               | Adds 0.75 to 3.50 in 0.25 steps  14mm AUTOSELECT                                         |               |       |        |
|               | 14IIIII AUTOSELECT                                                                       |               |       |        |
|               |                                                                                          |               |       |        |
|               |                                                                                          |               |       |        |
|               |                                                                                          |               |       |        |
|               |                                                                                          |               |       |        |
|               |                                                                                          |               |       |        |
|               |                                                                                          |               |       |        |
|               |                                                                                          |               |       |        |
|               |                                                                                          |               |       |        |
|               |                                                                                          |               |       |        |
|               |                                                                                          |               |       |        |
|               |                                                                                          |               |       |        |
| 1 '           |                                                                                          | 1             |       | 1      |
|               |                                                                                          |               |       |        |

AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Variable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.









## RESIN LENSES HIGH INDEX 1.67

**RESIN** 

Reactolite®

Transiti@ns<sup>\*</sup>

Transitions G = N8

Transitions XTRActive

**NuPolar** 

ENHANCED UV upgrade clear 1.67 UV410 productS CODED UV410

1.67

Index MR10 32

**Abbe** 

1.36g/cm<sup>3</sup>

**Density** 

395nm

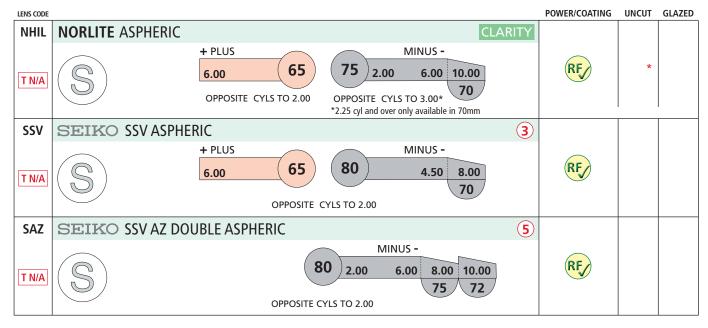
UV

1.67

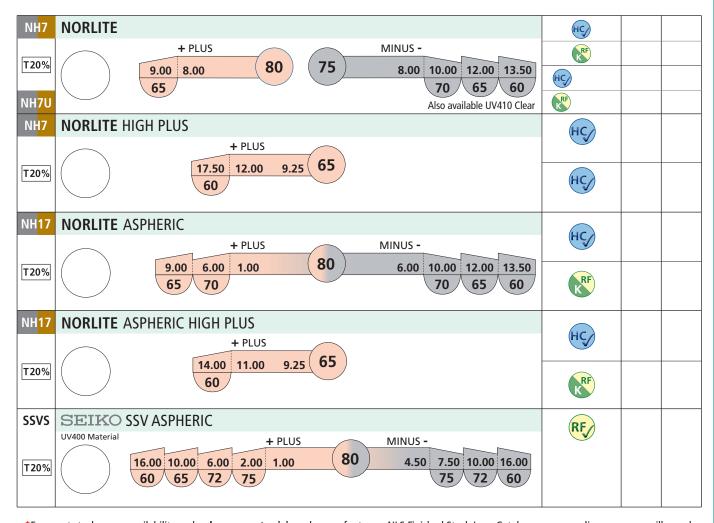
Index UV410 32

**Abbe** 

1.36g/cm<sup>3</sup>


**Density** 

410nm


UV

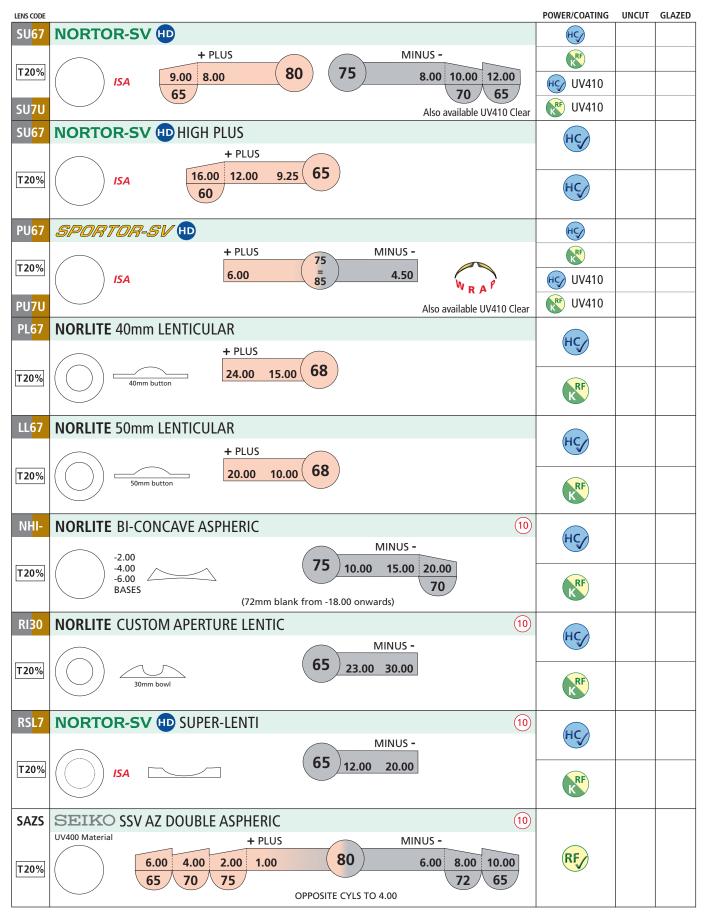


#### RESIN SINGLE VISION FINISHED STOCK

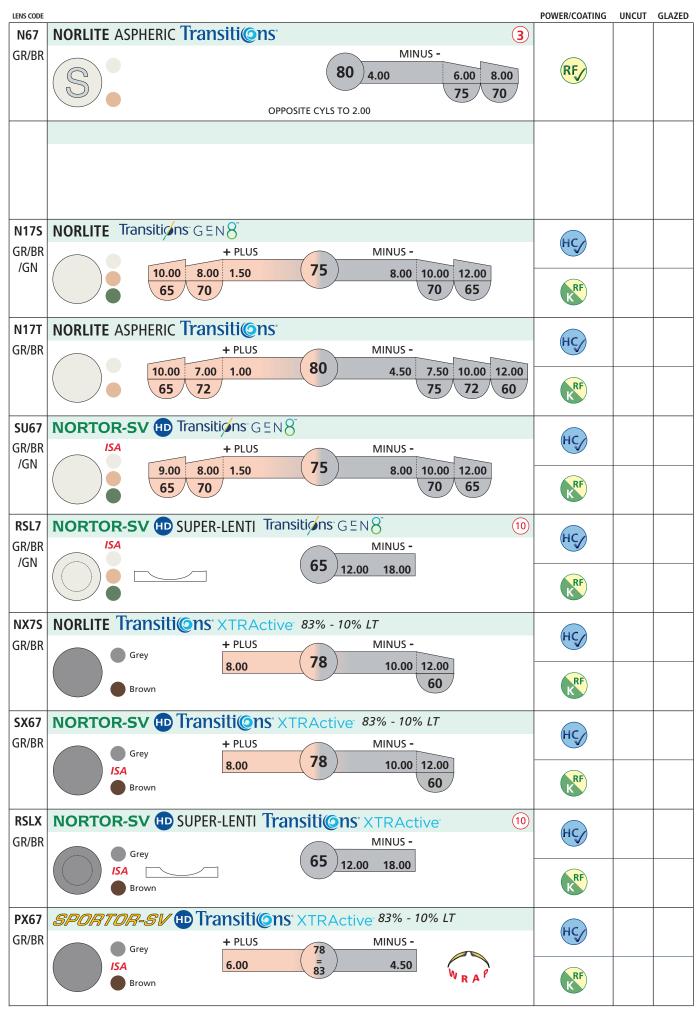


#### **RESIN SINGLE VISION**



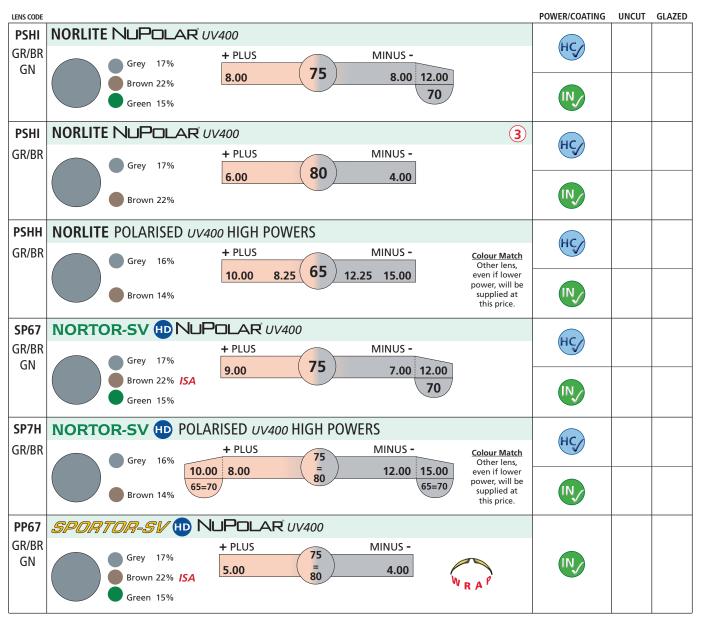

<sup>\*</sup>For exact stock range availability and volume uncut pricing please refer to our NLS Finished Stock Lens Catalogue or see online - www.norville.co.uk

Overcoloured background indicates  $Reactolite^*$  availability quick guide or see separate catalogue

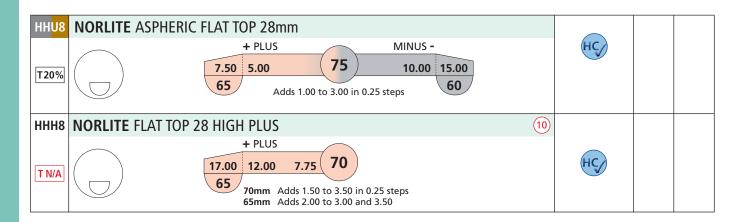

## 1.67

#### **RESIN SINGLE VISION**



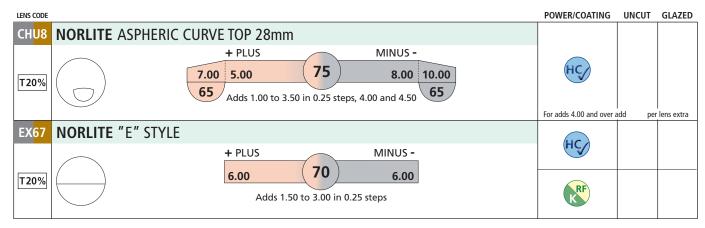



#### **RESIN SINGLE VISION Transitions**

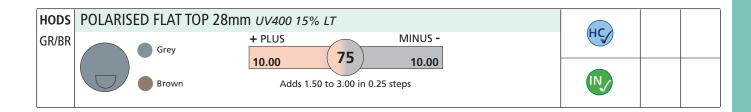



#### RESIN SINGLE VISION NUPOLAR

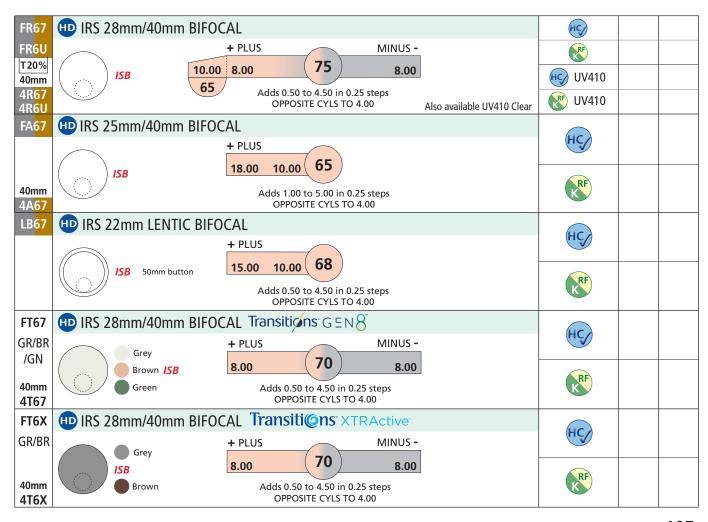





#### **RESIN BIFOCALS**

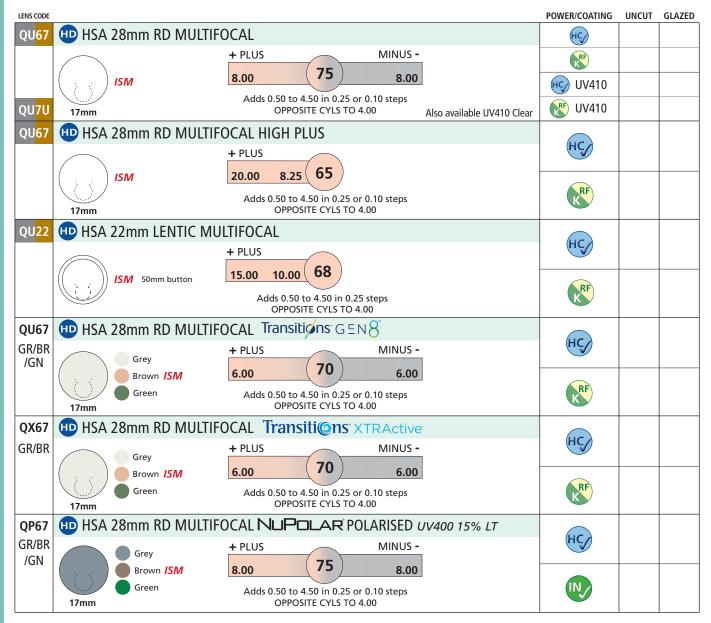




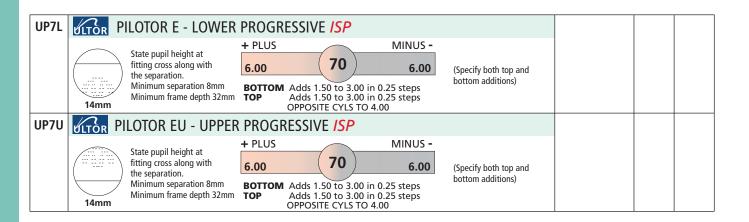


#### **RESIN BIFOCALS**



#### **RESIN POLARISED BIFOCALS**

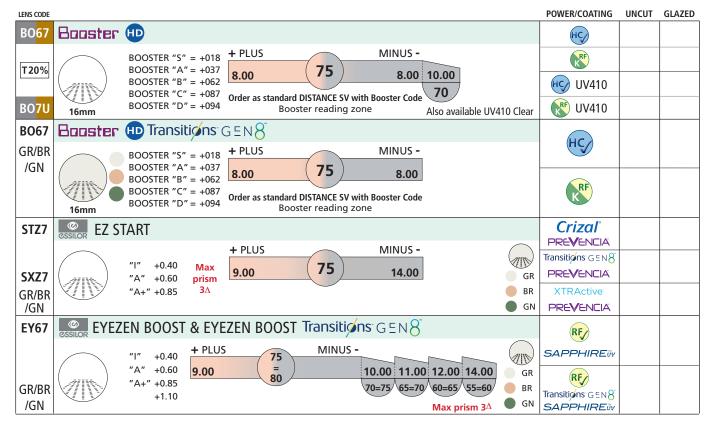



## RESIN HD IRS BIFOCALS

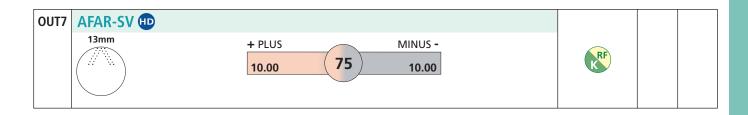



### RESIN HD HSA 28mm RD MULTIFOCAL

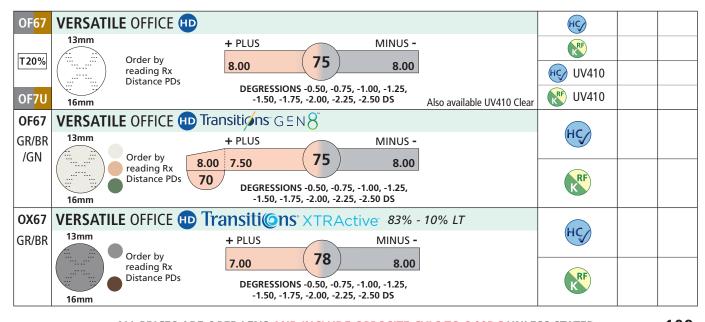





#### RESIN SPECIALIST PROGRESSIVES



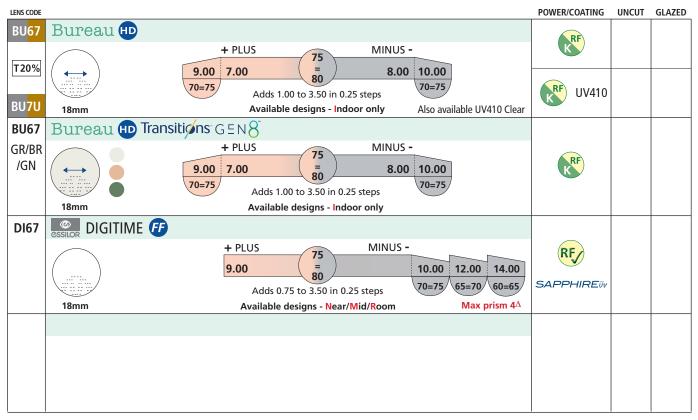


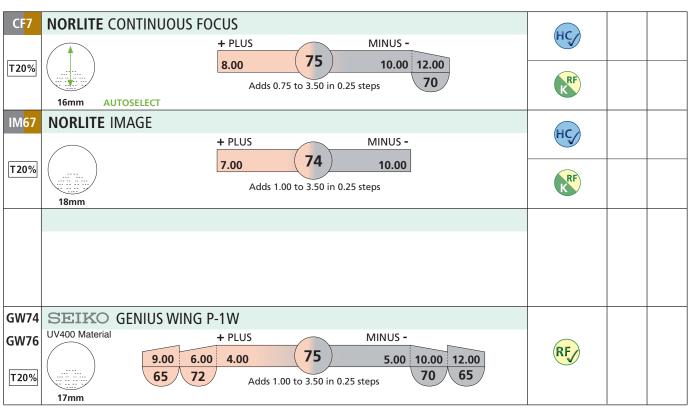



## RESIN HD NIGHT MYOPIA ZONE




## RESIN HD DEGRESSIVES (ENHANCED NEAR VISION)

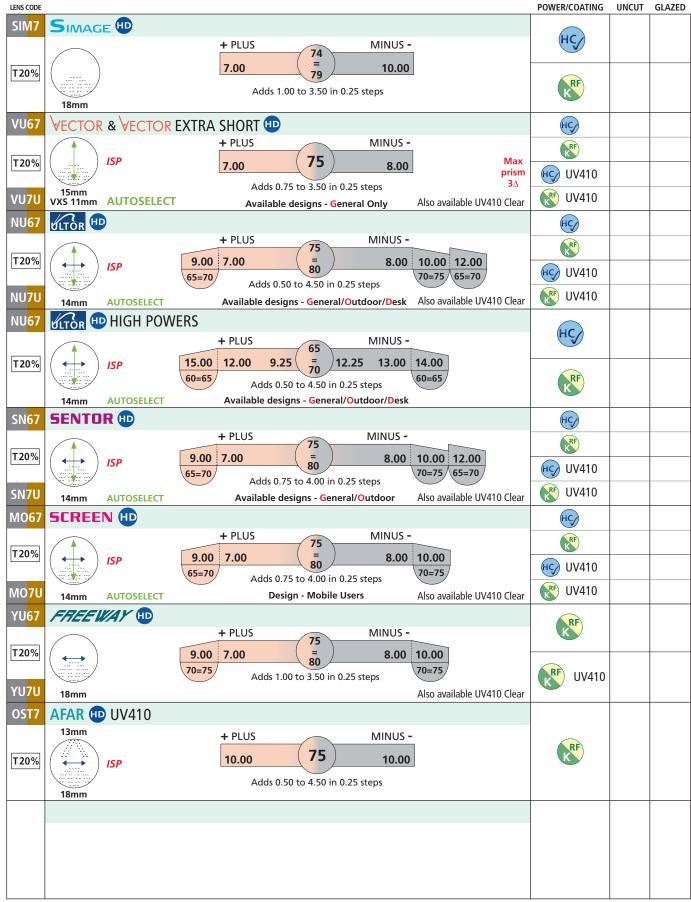





#### **RESIN OCCUPATIONAL PROGRESSIVES**






#### **RESIN PROGRESSIVES**



AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED Wariable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.







AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

→ Variable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.

Overcoloured background indicates  $Reactolite^{\circ}$  availability quick guide or see separate catalogue

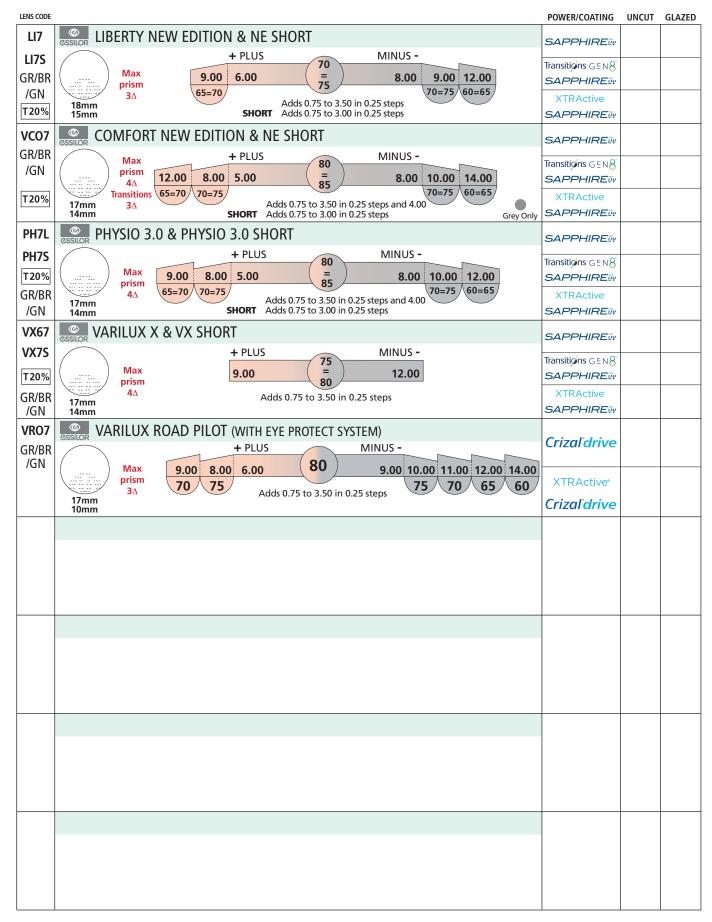






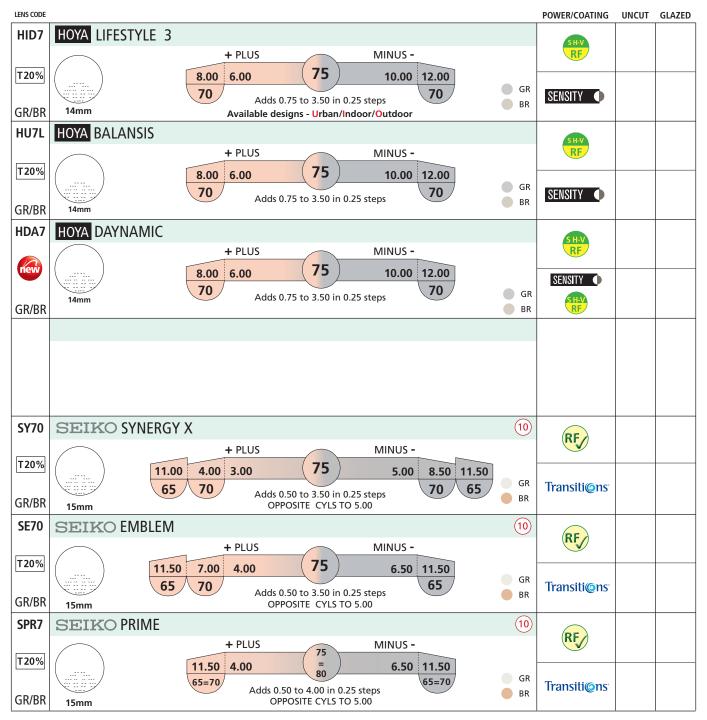
| LENS CODE          |        |            |               |               |                     |             |                            | POWER/COATING   | UNCUT | GLAZED |
|--------------------|--------|------------|---------------|---------------|---------------------|-------------|----------------------------|-----------------|-------|--------|
| RU <mark>67</mark> | RESOL  | VE IID     |               |               |                     |             |                            | HC              |       |        |
|                    | 1      |            |               | + PLUS        | 75                  | MINUS -     |                            | RF              |       |        |
| T20%               |        | ISP        | 9.00<br>70=75 | 7.00          | 80                  | 8.00        | 10.00<br>70=75             | HC UV410        |       |        |
| RU7U               | 14mm   | AUTOSELECT | 70=73         | Adds 0.7      | 75 to 4.50 in 0.25  | steps       | Also available UV410 Clear | <b>UV410</b>    |       |        |
| PG67               | PARAG  | SON OHD    |               |               |                     |             |                            | _               |       |        |
|                    |        |            |               | + PLUS        |                     | MINUS -     |                            |                 |       |        |
| T20%               |        | ISP        |               | 8.00          | (75)                | 14.00       |                            | BA              |       |        |
|                    | 12     | AUTOCFLECT |               | Adds 0.       | .75 to 4.00 in 0.25 | steps       |                            |                 |       |        |
| CM <mark>67</mark> | Digito | AUTOSELECT |               | Available des | igns - General/O    | utdoor/Desk |                            |                 |       |        |
| CIVIO              | Digilo | ens :      |               | + PLUS        |                     | MINUS -     |                            | RF              |       |        |
| T20%               |        | ISP        |               | 9.00          | 75                  | 14.00       |                            |                 |       |        |
|                    |        | isr        |               |               | 75 to 4.50 in 0.25  |             | ı                          | <b>RF</b> UV410 |       |        |
| CM <mark>67</mark> | 14mm   | AUTOSELECT |               | OPP           | OSITE CYLS TO 8.    | 00          |                            |                 |       |        |
|                    |        |            |               |               |                     |             |                            |                 |       |        |
|                    |        |            |               |               |                     |             |                            |                 |       |        |
|                    |        |            |               |               |                     |             |                            |                 |       |        |
|                    |        |            |               |               |                     |             |                            |                 |       |        |
| WU <mark>67</mark> | SPORT  | PAL HD     |               |               |                     |             |                            | HC              |       |        |
|                    |        |            |               | + PLUS        | 75                  | MINUS -     |                            | RF              |       |        |
| T20%               |        | ISP        |               | 6.00          | = 80                | 4.50        |                            |                 |       |        |
|                    |        |            |               | Adds 0.       | 75 to 3.50 in 0.25  | steps       | WRAP                       | •               |       |        |
| WU <mark>7U</mark> | 14mm   | AUTOSELECT |               |               |                     |             | Also available UV410 Clear | <b>RF</b> UV410 |       |        |
|                    |        |            |               |               |                     |             |                            |                 |       |        |
|                    |        |            |               |               |                     |             |                            |                 |       |        |
|                    |        |            |               |               |                     |             |                            |                 |       |        |
|                    |        |            |               |               |                     |             |                            |                 |       |        |
|                    |        |            |               |               |                     |             |                            |                 |       |        |
|                    |        |            |               |               |                     |             |                            |                 |       |        |
|                    |        |            |               |               |                     |             |                            |                 |       |        |
|                    |        |            |               |               |                     |             |                            |                 |       |        |
|                    |        |            |               |               |                     |             |                            |                 |       |        |
|                    |        |            |               |               |                     |             |                            |                 |       |        |
|                    |        |            |               |               |                     |             |                            |                 |       |        |
|                    |        |            |               |               |                     |             |                            |                 |       |        |
|                    |        |            |               |               |                     |             |                            |                 |       |        |
|                    |        |            |               |               |                     |             |                            |                 |       |        |
|                    |        |            |               |               |                     |             |                            |                 |       |        |
|                    |        |            |               |               |                     |             |                            |                 |       |        |
|                    |        |            |               |               |                     |             |                            |                 |       |        |
| 1                  | l      |            |               |               |                     |             |                            | İ               |       |        |

AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED 

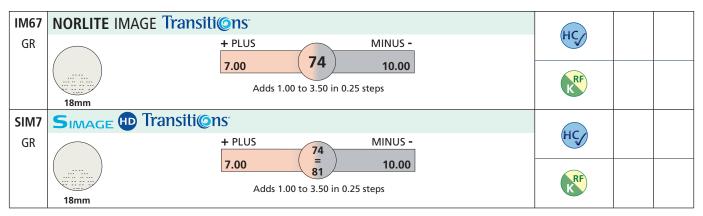

Variable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.

**XXL** - Need a larger diameter HD Progressive for those oversize Fashion, Sun or Sports frames? You can add 10mm to the effective diameter by stating XXL next to the HD Progressive or HD SV, additional price see page 136.

\* All SPORTPAL lens forms also available as S.E.P. Atoral design central 50mm with free-form edge blend to reduce substance.

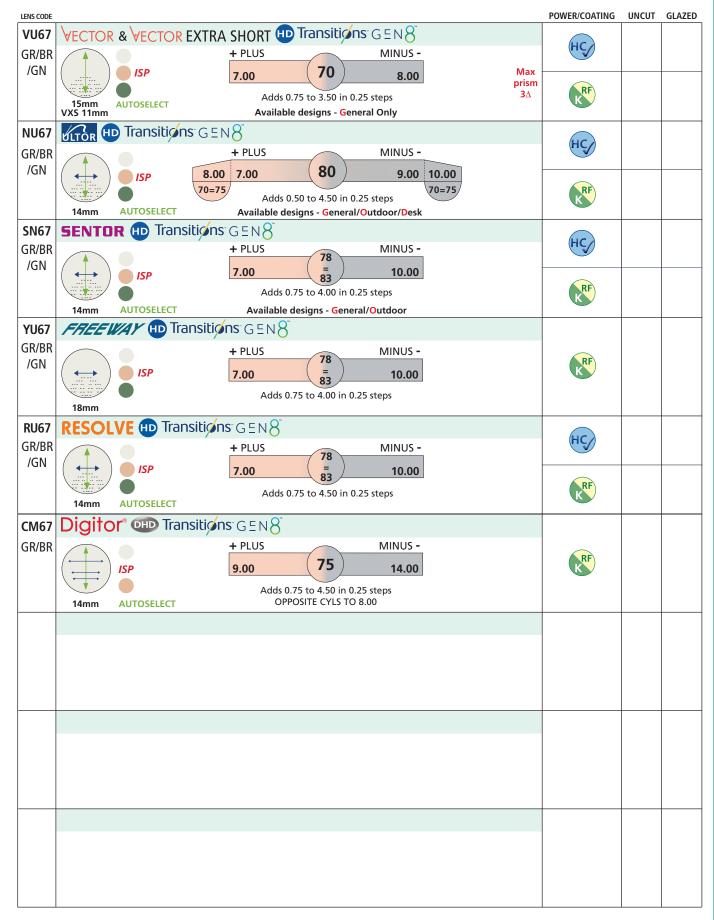








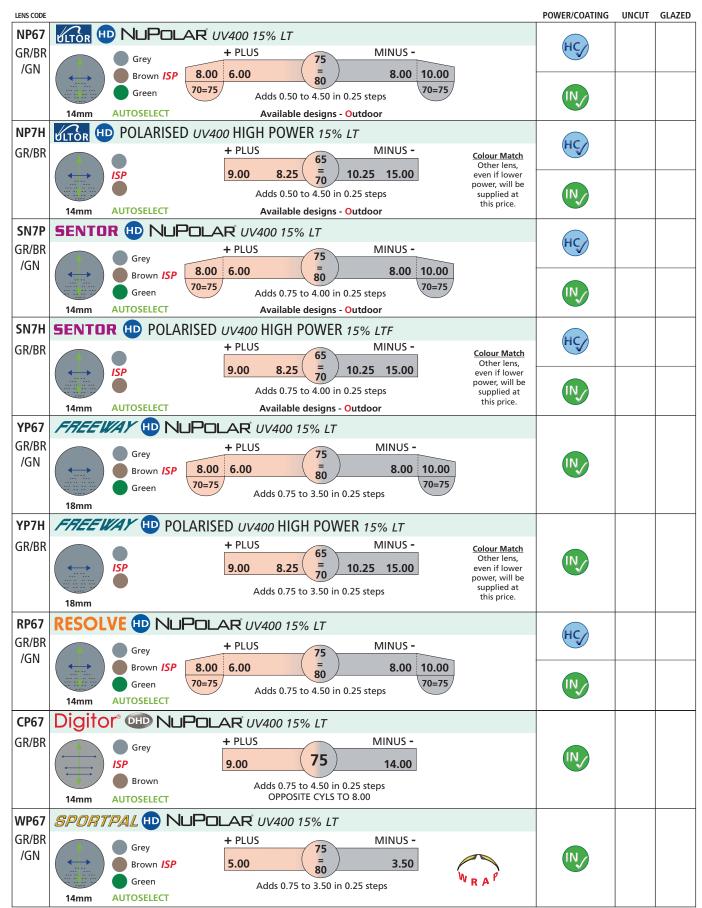




## RESIN PROGRESSIVES Transitions





## RESIN PROGRESSIVES Transitions GEN8




## RESIN PROGRESSIVES Transitions



| LENS CODE     |                                                                                      | POWER/COATING | UNCUT | GLAZED |
|---------------|--------------------------------------------------------------------------------------|---------------|-------|--------|
| NX67<br>GR/BR | + PLUS MINUS -                                                                       | HC            |       |        |
|               | 7.00 83 10.00  Adds 0.50 to 4.50 in 0.25 steps  Available designs - General/Outdoor  | RF            |       |        |
| SNX7<br>GR/BR | SENTOR HD Transitions XTRActive + PLUS MINUS -                                       | HC            |       |        |
|               | 7.00 = 10.00  Adds 0.75 to 4.00 in 0.25 steps  Available designs - General/Outdoor   | RF            |       |        |
| YX67          | FREEWAY ID Transitions' XTRActive                                                    |               |       |        |
| GR/BR         | + PLUS MINUS -  7.00                                                                 | RF            |       |        |
| RX67<br>GR/BR | RESOLVE (ID) Transitions' XTRActive + PLUS MINUS -                                   | HC            |       |        |
|               | 7.00 83 10.00  Adds 0.75 to 4.50 in 0.25 steps                                       | RF            |       |        |
| CM7X          | Digitor® OHD Transitions® XTRActive®                                                 |               |       |        |
| GR/BR         | + PLUS MINUS -  9.00 75 14.00  Adds 0.75 to 4.50 in 0.25 steps OPPOSITE CYLS TO 8.00 | RF            |       |        |
| WX67<br>GR/BR | **PORTPAL **D Transitions* XTRActive* 83% - 10% LT  + PLUS MINUS -                   | HC            |       |        |
|               | 15P = 4.50 Adds 0.75 to 3.50 in 0.25 steps                                           | RF            |       |        |
|               |                                                                                      |               |       |        |
|               |                                                                                      |               |       |        |
|               |                                                                                      |               |       |        |
|               |                                                                                      |               |       |        |
|               |                                                                                      |               |       |        |
|               |                                                                                      |               |       |        |
|               |                                                                                      |               |       |        |





AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Wariable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.

**XXL** - Need a larger diameter HD Progressive for those oversize Fashion, Sun or Sports frames? You can add 10mm to the effective diameter by stating XXL next to the HD Progressive or HD SV, additional price see page 136.









# RESIN LENSES VERY HIGH INDEX 1.74

**RESIN** 

**RESIN TINTABLE** 

Transiti@ns<sup>®</sup>

Transitions G EN8

ENHANCED UV UPGRADE\*
Clear 1.74 UV410
products coded UV410

1.74

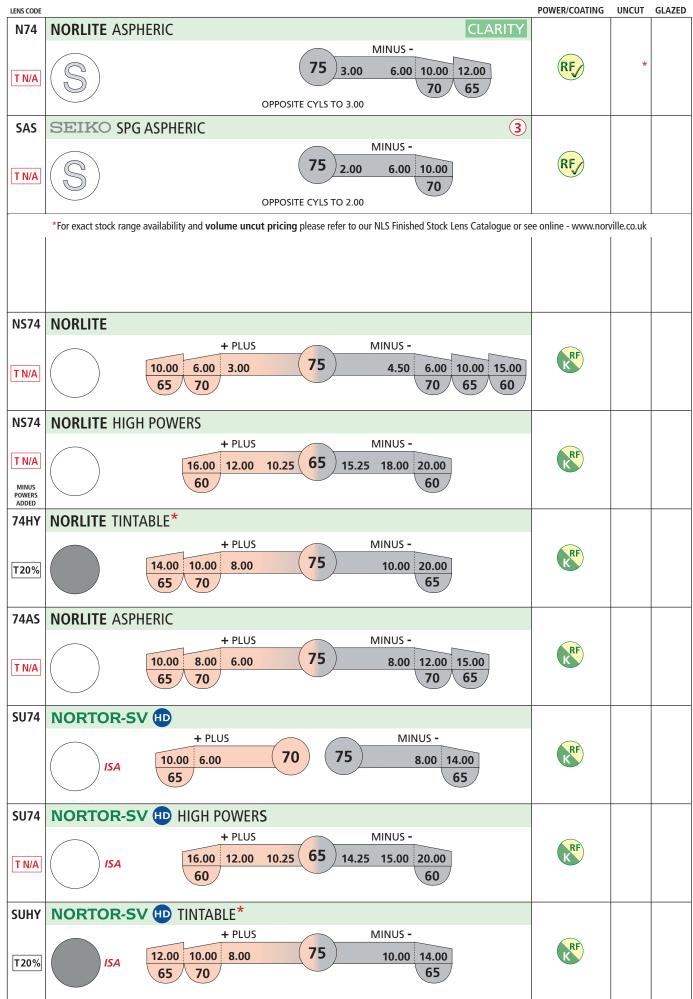
Index

33

**Abbe** 

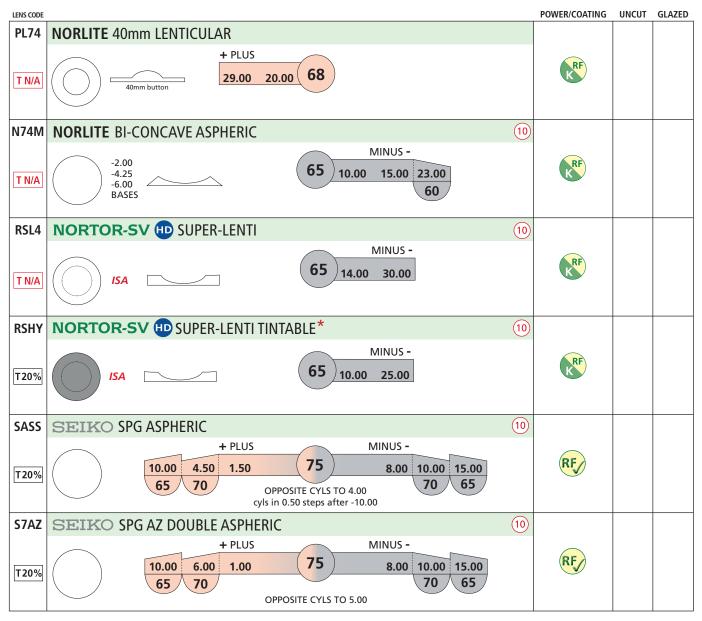
1.46g/cm<sup>3</sup>

**Density** 


396nm

UV




#### **RESIN SINGLE VISION**

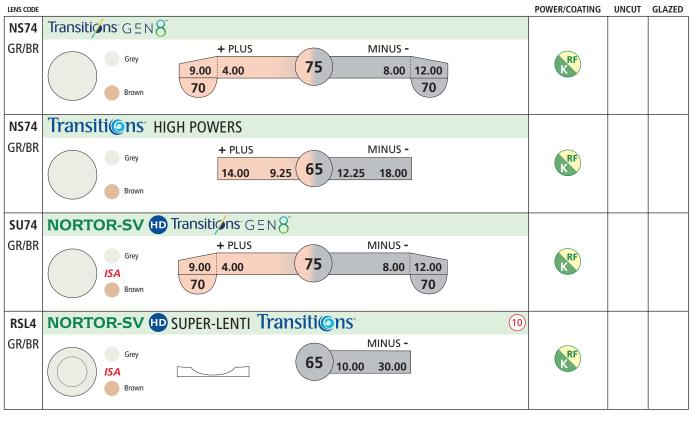




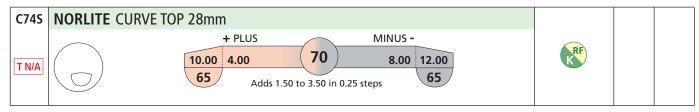
#### **RESIN SINGLE VISION**



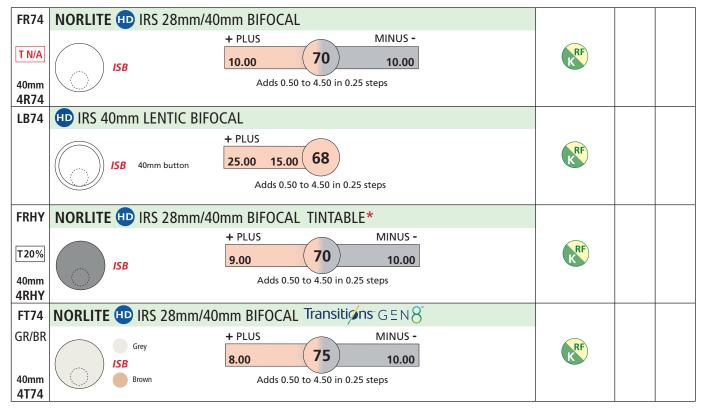



### **RESIN SINGLE VISION POLARISED**

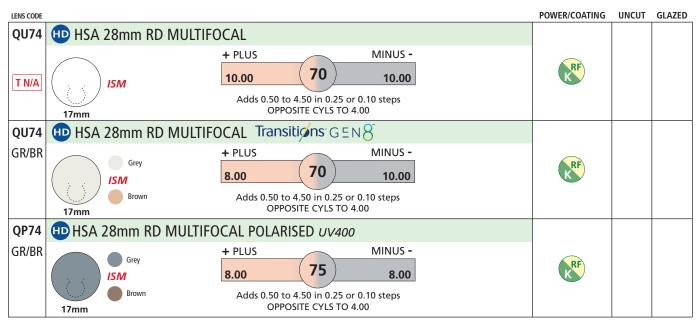



<sup>\*</sup>Note: Tints available on these products from 80% to 20% LTF - price excludes tint cost.




## RESIN SINGLE VISION Transitions



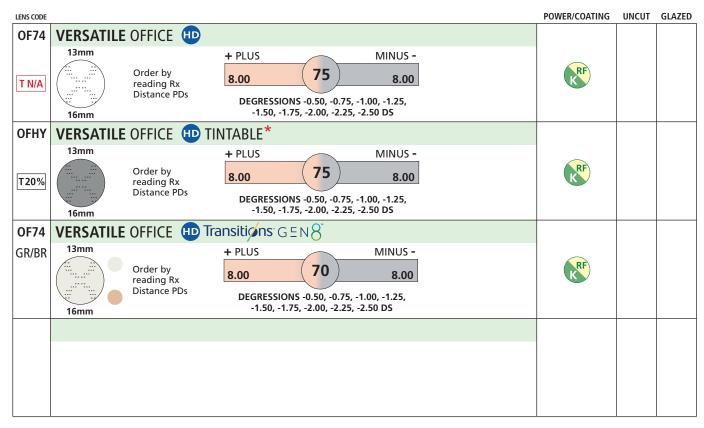

#### **RESIN BIFOCALS**



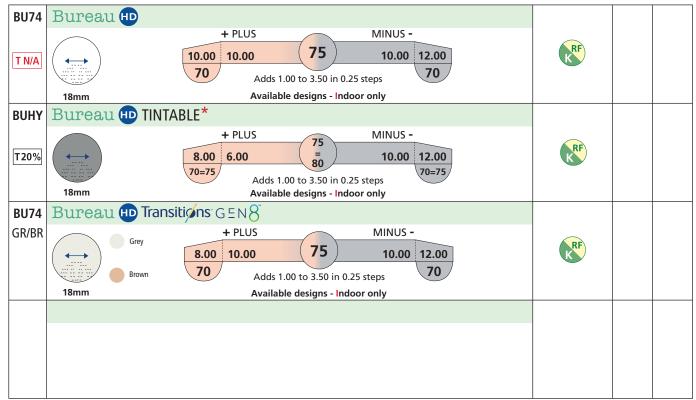
## RESIN HD IRS BIFOCALS








# RESIN HD ENHANCED NEAR


|       | _                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | $\neg$ |
|-------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------|
| B074  | Booster HD                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |        |
| T N/A | BOOSTER "A" = +037<br>BOOSTER "B" = +062                       | TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL | RF |        |
| вону  | Booster 🕪 TINTABLE*                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |        |
| T20%  | BOOSTER "A" = +037<br>BOOSTER "B" = +062<br>BOOSTER "C" = +087 | TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL | RF |        |
| BO74  | Booster (ID) Transitions G                                     | 5N8°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |        |
| GR/BR | BOOSTER "A" = +037<br>BOOSTER "B" = +062                       | 8.00 MINUS - 10.00  Order as standard DISTANCE SV with Booster Code Booster reading zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RF |        |
|       |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |        |
|       |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |        |
|       |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |        |
|       |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |        |
|       |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |        |

 $<sup>\</sup>mbox{*}$  Note: Tints available on these products from 80% to 20% LTF - price excludes tint cost.



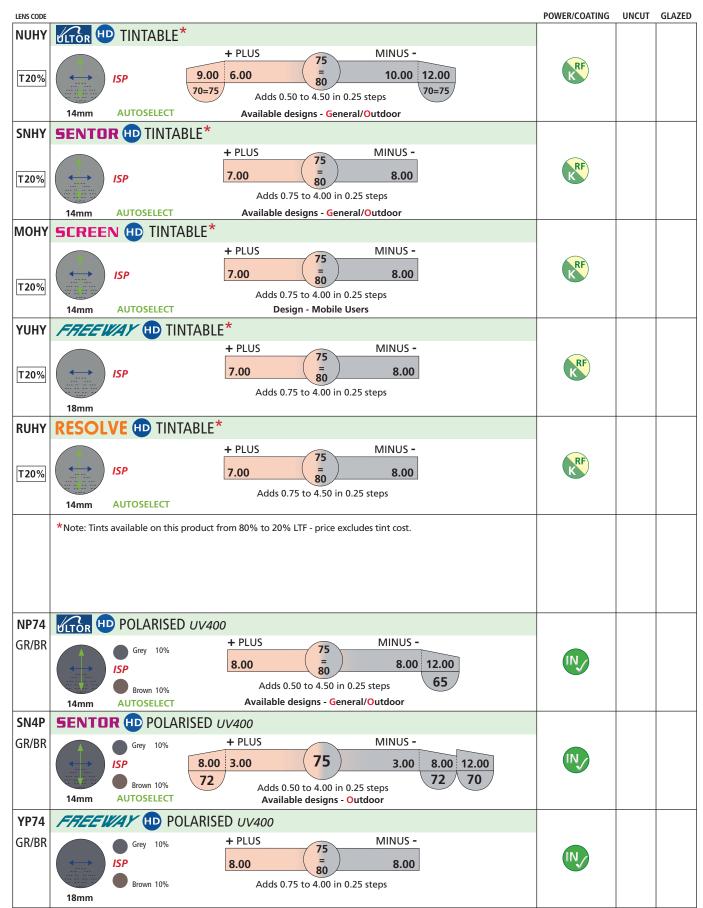


# RESIN HD OCCUPATIONAL PROGRESSIVES



<sup>\*</sup>Note: Tints available on these products from 80% to 20% LTF - price excludes tint cost.

# RESIN HD PROGRESSIVES




| LENS CODE |                                                                                                                                 | POWER/COATING | UNCUT | GLAZED |
|-----------|---------------------------------------------------------------------------------------------------------------------------------|---------------|-------|--------|
| NU74      | VITOR HD                                                                                                                        |               |       |        |
| T N/A     | + PLUS  70  75  8.00  12.00  15.00  Adds 0.50 to 4.50 in 0.25 steps  14mm  AUTOSELECT  Available designs - General/Outdoor/Desk | RF            |       |        |
| NU74      | WITOR HD HIGH POWERS                                                                                                            |               |       |        |
| T N/A     | + PLUS MINUS -  15.00 10.25 65 15.25 18.00  Adds 0.50 to 4.50 in 0.25 steps  Available designs - General/Outdoor/Desk           | RF            |       |        |
| SN74      | SENTOR (HD                                                                                                                      |               |       |        |
| T N/A     | + PLUS MINUS -  8.00 80 8.00 10.00  Adds 0.75 to 4.00 in 0.25 steps  Available designs - General/Outdoor                        | RF            |       |        |
| M074      | SCREEN HD                                                                                                                       |               |       |        |
| T N/A     | + PLUS MINUS -  8.00 8.00  Adds 0.75 to 4.00 in 0.25 steps  Design - Mobile Users                                               | RF            |       |        |
| YU74      | FREEWAY (ID                                                                                                                     |               |       |        |
| T N/A     | + PLUS MINUS -  8.00                                                                                                            | RF            |       |        |
| RU74      | RESOLVE HD                                                                                                                      |               |       |        |
| T N/A     | + PLUS MINUS -    SP   8.00   80   10.00      Adds 0.75 to 4.50 in 0.25 steps                                                   | RF            |       |        |
| CM74      |                                                                                                                                 |               |       |        |
| T N/A     | + PLUS MINUS -  9.00 75 14.00  Adds 0.75 to 4.50 in 0.25 steps                                                                  | RF            |       |        |
|           |                                                                                                                                 |               |       |        |
|           |                                                                                                                                 |               |       |        |
|           |                                                                                                                                 |               |       |        |

AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED Wariable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.





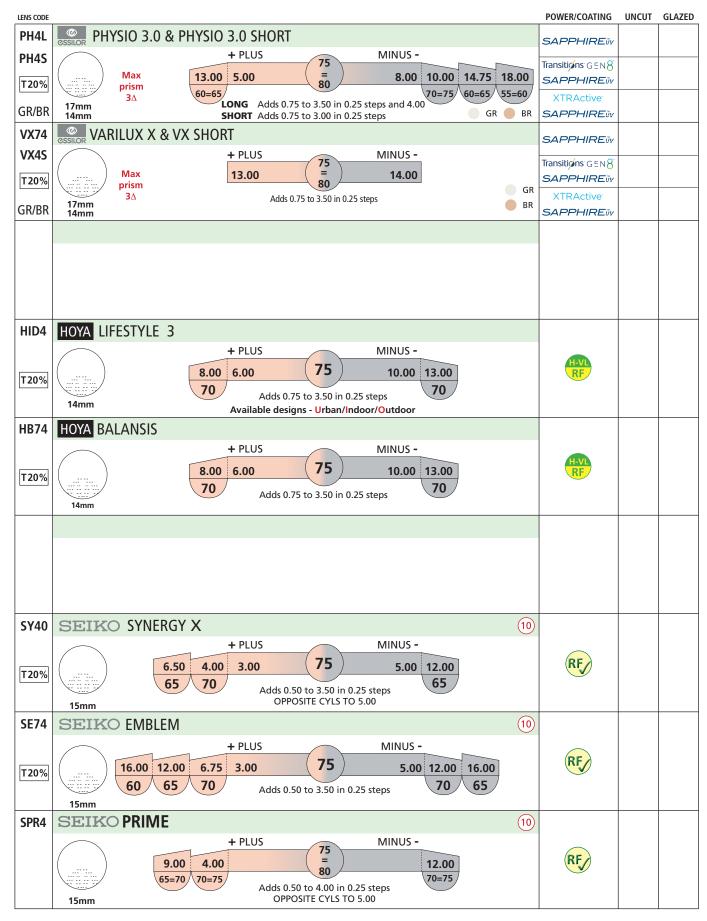


AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Variable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.



# RESIN HD PROGRESSIVES Transitions GEN8




| LENS CODE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | POWER/COATING | UNCUT | GLAZED |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|--------|
| NU74      | Transitions GEN8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |       |        |
| GR/BR     | Frown  Grey  # PLUS   PLUS # PLUS # PLUS # PLUS # PLUS # PLUS # PLUS # PLUS # PLUS # PLUS # PLUS # PLUS # PLUS # PLUS # PLUS # PLUS # PLUS # PLUS # PLUS # PLUS # PLUS # PLUS # PLUS # PLUS # | RF            |       |        |
|           | 14mm AUTOSELECT Available designs - General/Outdoor/Desk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |       |        |
| SN74      | <b>SENTOR</b> (ID) Transitions G = N 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |       |        |
| GR/BR     | # PLUS MINUS -    Second Plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RF            |       |        |
| YU74      | FREEWAY ID Transitions GEN8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |       |        |
| GR/BR     | # PLUS MINUS -  78 7.00  Brown  Adds 0.75 to 4.00 in 0.25 steps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RF            |       |        |
| RU74      | RESOLVE HD Transitions GEN8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |       |        |
| GR/BR     | # PLUS MINUS -    15P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RF            |       |        |
| CM74      | Digitor OHD Transitions GEN8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |       |        |
| GR/BR     | # PLUS MINUS -    SP   Brown   Adds 0.75 to 4.50 in 0.25 steps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RF            |       |        |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |       |        |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |       |        |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |       |        |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |       |        |

AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED Wariable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.















# RESIN LENSES VERY HIGH INDEX 1.76

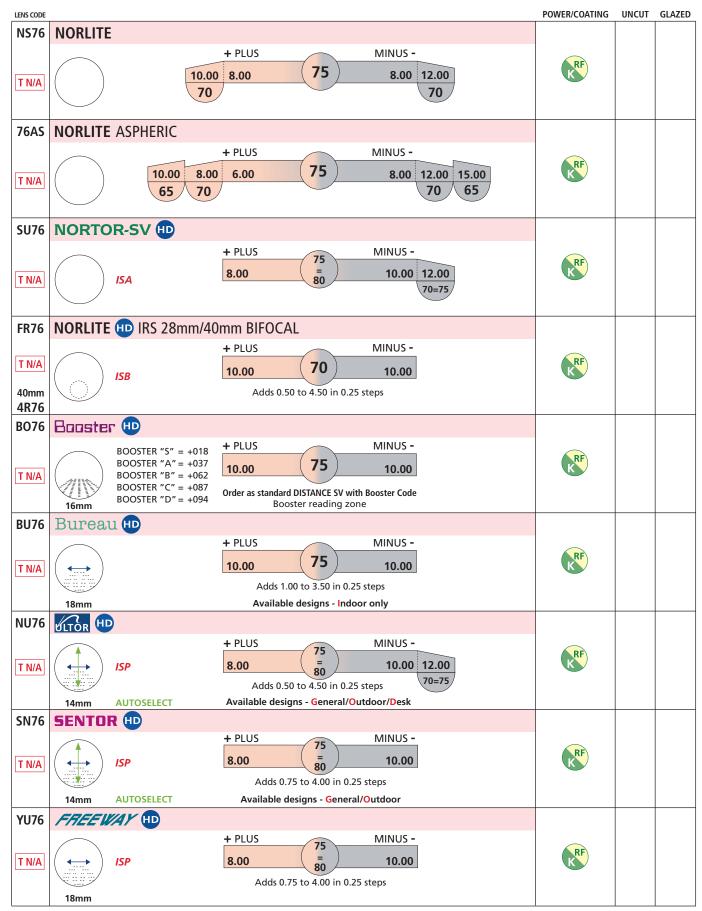
1.76

Index

30

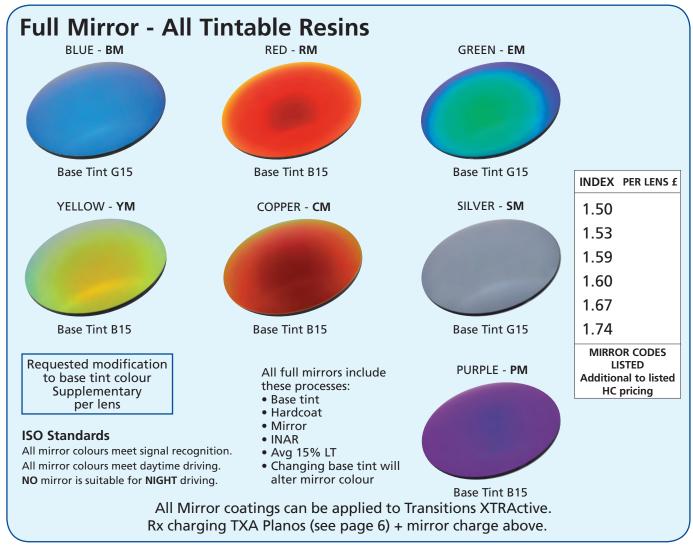
**Abbe** 

1.46g/cm<sup>3</sup>

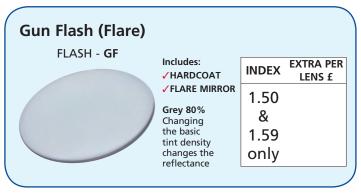

**Density** 

400nm

UV




#### **RESIN VERY HIGH INDEX**




AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED


Wariable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.



\* Please Note: Older mirror colours/codes no longer available.









Hardcoated - coated both sides

| Supplementary to lens price (UNC) |       |                |  |  |  |  |
|-----------------------------------|-------|----------------|--|--|--|--|
| Order Code                        | Index | Price per lens |  |  |  |  |
| NP                                | ALL   |                |  |  |  |  |



Anti-Fog Coated - both sides Single vision and Free-form designs Glazed Service Only

12 Months Warranty

Please Note: No 1.50 available, nor any bifocals Combined AR application not possible

| Supplementary to | lens price | (UNC or | · HC) |
|------------------|------------|---------|-------|
|------------------|------------|---------|-------|

| Order Code | Index | Price per lens |
|------------|-------|----------------|
| 1.53       |       |                |
| AE         | 1.59  |                |
| AF         | 1.60  |                |
|            | 1.67  |                |



HRC

Brown

Reactolite® Hardcoat Photochromic

Resin lenses only Not available 1.74 & 1.76 index

| Order Code               | Index                | SV | PPL/IRS | Bifocal/Trifocal | Executive Bifs |
|--------------------------|----------------------|----|---------|------------------|----------------|
| Dark                     | 1.50<br>1.53         |    |         |                  | PEX only       |
| RG15 15%LT<br>RB15 15%LT | 1.56<br>(VM)         |    |         | N/A              | N/A            |
| Medium<br>RG40 40% LT    | 1.58<br>1.59<br>1.60 |    |         |                  | n=1.60         |
| RB40 40% LT              | 1.67                 |    |         |                  |                |

Supplementary to lens price (UNC or HC)

 $\textit{Please note: when Reactolite is specified with an RF coating we recommend \textit{\textbf{P} Coat} - Reactolite specific MAR coat.}$ 

: Unless otherwise specified all transmissions supplied will be Dark 15% rather than lighter 40% LT (dark)

## **Other Coatings**

Crizal Coatings PREVENCIA

| Order Code | Index | Price per lens |
|------------|-------|----------------|
| С-Р        | All   | As<br>Sapphire |

# HOYA RF Coating HOYA LONGLIFE


Add to Super Hi-Vision pricing



| Order Code        | Coating                                     | Price per lens |
|-------------------|---------------------------------------------|----------------|
| LL<br>LLB<br>LLUV | LONGLIFE<br>LONGLIFE + BLUE<br>LONGLIFE +UV |                |
| *Whe              | re available                                |                |







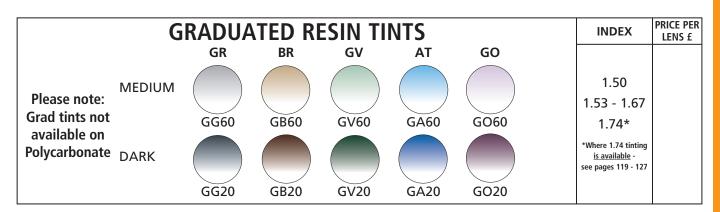




### **Reflection-Free Coating**

| COATING             | CODE | REFLEX | HARD<br>COAT | CLEAN<br>COAT | EASY<br>CLEAN | SUPER<br>EASY-CLEAN | ANTI-STATIC<br>LAYER | BLUE LIGHT<br>BLOCK |
|---------------------|------|--------|--------------|---------------|---------------|---------------------|----------------------|---------------------|
| Clarity Super Clean | ARPM | Green  | <b>√</b>     | -             | -             | $\checkmark$        | <b>/</b>             | -                   |
| Clarity             | ARBC | Green  | <b>√</b>     | <b>√</b>      | -             | -                   | -                    | -                   |
| Blue Light Filter   | KBLU | Blue   | 1            | -             | 1             | -                   | 1                    | 1                   |
| Sun Lens            | INAR | Green  | <b>√</b>     | -             | 1             | -                   | <b>√</b>             | -                   |
| Mineral             | MARE | Green  | -            | -             | -             | -                   | -                    | -                   |
|                     |      |        |              |               |               |                     |                      |                     |

## **Hard Coating**


| COATING          | CODE | REFLEX | HARD COAT | ANTI-FOG |  |
|------------------|------|--------|-----------|----------|--|
| Anti-Fog Premium | AF   | Clear  | <b>√</b>  | <b>√</b> |  |
| Norville Protect | NP   | Clear  | ✓         | -        |  |

#### **COATING UPGRADE**

Within this price list many lenses, particularly higher indices, are listed inclusive with a hard or reflection free coating. However, it is possible for you to specify a higher coating grade at the time of ordering and you will be charged only the difference in price to your preferred specification.



|              | GREY             | BROWN             | GREEN     | ATLANTIC | ORCHID                | LILAC          | MAGENTA         | INDEX                                                               | PRICE PER<br>LENS £ |
|--------------|------------------|-------------------|-----------|----------|-----------------------|----------------|-----------------|---------------------------------------------------------------------|---------------------|
|              | GREY             | BROWN             | GREEN     | ATLANTIC | ORCHID                | Lilac          | Purplish<br>Red |                                                                     |                     |
|              |                  |                   |           |          |                       |                | Reu             |                                                                     |                     |
| PALE         | GR80             | BR80              | GN80      | AT80     | OR80                  | L80            | M80             |                                                                     |                     |
|              |                  |                   |           |          |                       |                |                 | *1.50                                                               |                     |
| LIGHT        | GR60             | BR60              | GN60      | AT60     | OR60                  | L60            | M60             | 1.53 - 1.67<br>1.74*                                                |                     |
|              |                  |                   |           |          |                       |                |                 | *Where 1.74 tinting<br><u>is available</u> -<br>see pages 119 - 127 |                     |
| MEDIUM       | GR40             | BR40              | GN40      | AT40     | OR40                  | L40            | M40             |                                                                     |                     |
|              |                  |                   |           |          |                       |                |                 |                                                                     |                     |
| SUN          | GR15             | BR15              | GN15      | AT15     | OR20                  |                |                 |                                                                     |                     |
|              | <b>VER</b> (     | ONA HAZ           | rm G      | rey Bala | ACK GR<br>nced<br>rey | REY BRO        | OWN             |                                                                     |                     |
|              |                  |                   |           |          |                       |                |                 |                                                                     |                     |
| PALE         | VS               | BO H8             | 30 D      | 80 N     | 80 G8                 | 88 B           | 80              |                                                                     |                     |
|              |                  |                   |           |          |                       |                |                 | *1.50<br>1.53 - 1.67                                                |                     |
| LIGHT        | Ve               | 50 H6             | 50 D      | 60 N     | 60 G                  | 75 B           | 65              | 1.74*                                                               |                     |
|              |                  |                   |           |          |                       |                |                 | *Where 1.74 tinting<br><u>is available</u> -<br>see pages 119 - 127 |                     |
| MEDIUM       | V                | 10 H <sup>2</sup> | 10 D      | 40 N     | 40 G                  | 40 B           | 35              |                                                                     |                     |
|              |                  |                   |           |          |                       |                |                 |                                                                     |                     |
| DARK         |                  | H2                | .0 D      | 20 N     | 20 G:                 | 33 B           | 25              |                                                                     |                     |
| All meet 201 | 5 traffic signal | recognition requ  | uirements |          | Numbers quot          | ed = Lens tran | smission (LT) % |                                                                     |                     |



# **Specialist Resin Tints**



| NORLITE 'DOT COM' OFFICE TINT & RF M Can reduce eye strain caused by computer | INDEX                             | PRICE PER<br>LENS £ |  |
|-------------------------------------------------------------------------------|-----------------------------------|---------------------|--|
| DTA - ALPHA Blue/grey tint 96% L.T                                            | DTE - EVA Pale hazel tint 85% L.T |                     |  |
| DTB - BETA Pale gold tint 90% L.T                                             | DTF Rose tint 94% L.T.            | 1.50                |  |
| DTG - GAMMA Pale mint tint 96% L.T                                            |                                   |                     |  |

| ReadE       | Z PRECISE     | SPECTRUM       | CALIBRATE     | D LENSES |    |   | INDEX | PRICE PER<br>LENS £ |
|-------------|---------------|----------------|---------------|----------|----|---|-------|---------------------|
| A to M COLO | OURS (Only av | ailable on 1.5 | 0 index uncoa | ited)    |    |   |       |                     |
|             |               |                |               |          |    |   |       |                     |
| Α           | В             | C              | D             | E        | F  |   | 1.50  |                     |
|             |               |                |               |          |    |   |       |                     |
| G           | Н             | 1              | J             | K        | L  | M |       |                     |
| MA to ML CO | OLOURS (Only  | y available on | 1.50 index un | coated)  |    |   |       |                     |
|             |               |                |               |          |    |   |       |                     |
| MA          | MB            | MC             | MD            | ME       | MF |   | 1.50  |                     |
|             |               |                |               |          |    |   |       |                     |
| MG          | MH            | MI             | MJ            | MK       | ML |   |       |                     |

| 1.50 RESIN UV400  1.50 resin has the lowest UV absorption of all resin lenses <360nm | 1.50 |  |  |
|--------------------------------------------------------------------------------------|------|--|--|
|--------------------------------------------------------------------------------------|------|--|--|

|                                                      |        | INDEX       | PRICE PER<br>LENS £ |
|------------------------------------------------------|--------|-------------|---------------------|
| DOUBLE GRADUATED (TOP & BOTTOM)                      | D-GRAD | 1.50 - 1.67 |                     |
| NON STANDARD TINT OR MATCHING NON STANDARD HALF PAIR | MONO   | 1.50 - 1.67 |                     |
|                                                      | GRAD   | 1.50 - 1.67 |                     |

# **Specialist Resin Tints**

|                | SKY - 28%<br>A reddish-orange colour with a tan flare.                                                                                                                                                                 |                   | WOODS - 42%<br>A forest green colour.                                                                                                                                                            | INDEX                       | PRICE PER<br>LENS £ |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------|
| SKY*           | Developed for the expert who wants to increase his or her skill when shooting at a clay pigeon or tracking a target. Increased background lighting brings the target visually closer for sharper distance estimations. | WOODS             | It enhances critical outdoor shades, particularly<br>benefiting golfers, making it easier for them to<br>see the fairway contours and read the slopes<br>and curves of the greens.               |                             |                     |
| % C            | TRAIL - 96% A yellow colour. Yellow assists in enhancing definition and this tint is therefore of use to those who participate in shooting sports and tracking golf balls.                                             | 79% \$\frac{1}{5} | FIELD - 19% A brown colour with a tan flare. It is designed for heightened contrast ability and is highly recommended for restful glasses. Particularly useful for general spectator activities. |                             |                     |
| 22. 40 % SERE* | SERENGETI COLOUR EQUIVALENT A colour tint equivalent to the fully exposed colour of the Serengeti Drivers.                                                                                                             | ₹8% €<br>RA15*    | RA 15 - 18% A dark greenish grey colour. The Norlite colour equivalent to the Ray-ban G15 lens.                                                                                                  | 1.50<br>1.53 - 1.67<br>1.74 |                     |
| <b>₽</b> 0% √  | <b>S40 - 40%.</b><br>A yellow blue blocker.                                                                                                                                                                            |                   |                                                                                                                                                                                                  |                             |                     |

| PLS 410 - Rose 50% Select for:  PLS 500 - Orange 50% Orange lens absorbing up to 500nm.                                                                                                                                                                                                                                                                                            |             |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| * fluorescent lighting  * fluorescent lighting  * light flicker  * eye strain  * tension headache  * photophobia - blepharospasm  * select for patients with:  * developing cataracts and post operative  * diabetic retinopathy * corneal dystrophy  * optic atrophy * albinism  * aphakia & pseudophakia * photophobia  * also for dentists                                      |             |  |
| PLS FL41 - Rose 30% Original Cambridge FL41 mix. Select for: * fluorescent lighting * light flicker * eye strain  PLS 540 - Brown 10% Dark amber brown lens absorbing up to 540nm sunglass blocking violet & blue. Primarily for outdoor use. * macular degeneration * pre-operative cataract * RK-PRK                                                                             |             |  |
| PLS G410 - Grey 30% Similar transmittance as PLS 410 but overtinted light grey to subdue lens colour. Select for: As PLS 410  PLS 550 - Red 20% Intense orange red lens absorbing up to 550nm Select for patients who have:  * macular degeneration  * colour blindness  * retinitis pigmentosa                                                                                    | 4.50, 4.67  |  |
| PLS 440 - Amber 50% Provides blue/violet attenuation with minimal colour distortion. Select for:  * macular degeneration  PLS 600 - Red 8% Red lens absorbing up to 600nm Select for patients with:  * macular degeneration                                                                                                                                                        | 1.50 - 1.67 |  |
| PLS 450 - Yellow 86% Winter Sun Yellow lens absorbing up to 450nm. Select for: * night blindness * macular degeneration * retinitis pigmentosa * SAD (Seasonal Affective Disorder)  * AMD protection  PLS Melanin - Brown 30% Yellow brown lens * natural body pigment protects against sunlight damage * maintains natural colours Uses: PLS MEL * post cataract * AMD protection |             |  |
| PLS 480 - Brown 15% Brown lens absorbing up to 480nm. Select for patients with:  * macular issues  * retinitis pigmentosa  * post operative cataract  * post operative cataract  * pls BRISTOL BLUE - 14% Recent studies have shown that certain blue tints can be helpful for people with light sensitive epilepsy.  PLS BB                                                       |             |  |

For further details please visit Norville Companion www.norville.co.uk Plus all transmission data.

# Resin Free-Form Surfaced Lenses



| Cumplementerale                          | ens Chargos                              |                                                                    | Suppler<br>Price no | mentary<br>er lens £ | Comp      |
|------------------------------------------|------------------------------------------|--------------------------------------------------------------------|---------------------|----------------------|-----------|
| Supplementary Le                         | ns Charges                               |                                                                    | SV                  | Multi                | Code      |
| WW. LARGE DIAMETER                       |                                          |                                                                    | 3,                  | Water                |           |
| XXL LARGE DIAMETER  Nortor or Sportor-SV | Increase the effective diameter          | huun to 10mm                                                       |                     |                      | <br> HD26 |
| '                                        |                                          |                                                                    |                     |                      | HD02      |
| Ultor or Sportpal Progressive            | increase the ellective diameter          | by up to 10mm or max achievable                                    |                     |                      | ПОО2      |
| XSS SUPER SMALL DIAMETI                  | -R                                       |                                                                    |                     |                      |           |
|                                          | <u> </u>                                 | ribbed (Resin Norville surfaced lens types only)                   |                     |                      | HD24      |
| SLAB OFF/ON BI-PRISM                     |                                          |                                                                    |                     |                      |           |
| SV ISA                                   | Combined slab prism from 0.5             | $0^{\Delta}$ to $6.00^{\Delta}$ Per lens or per pair Add to NORTOR |                     |                      | HD03      |
| Bifocal FT or IRS IRS                    | Combined slab prism from 0.5             |                                                                    |                     |                      | HD04      |
| PPL ISP                                  | Combined slab prism from 0.5             | • •                                                                |                     |                      | HD05      |
| (Prism split over both lenses to         | · ·                                      |                                                                    |                     |                      |           |
| (LENS FORM                               | on tall of the annual opening            |                                                                    |                     |                      |           |
| Supplied to a specific base curv         | e from core stock range i.e. 1.2.        | 4.6.8 bases when available                                         |                     |                      |           |
| ''                                       | _                                        | lens surface working i.e. FLATS -bonding curves                    |                     |                      | LF12      |
| HIGHER POWERS - SPHERICA                 |                                          | CYLINDRICAL - See Page 137                                         |                     |                      |           |
| All HD lens types                        | Up to 4.00 DS <b>over</b> stated pov     |                                                                    |                     |                      | HD09      |
| , ,                                      | 4.25 to 6.00 DS <b>over</b> stated po    | -                                                                  |                     |                      | HD25      |
|                                          | 6.25 to 10.00 DS <b>over</b> stated p    | 3                                                                  |                     |                      |           |
|                                          | 10.25 DS <b>and over</b> stated pov      |                                                                    |                     |                      | HD40      |
| PRISM & HIGH PRISM                       | ,                                        | 3 1                                                                |                     |                      |           |
| All HD lens types                        | Max prisms 12 <sup>∆</sup> charged as co | nventional surfaced prism pricing See page 137.                    |                     |                      | HD10      |
| SLIM EDGE PRODUCTION S.I                 |                                          | 1 1 3 1 3                                                          |                     |                      |           |
| Available on all HD lens types           |                                          |                                                                    |                     |                      | HD11      |
| Blend edge reduced visual aper           | ture to reduce edge substance, a         | available plus or minus powers                                     |                     |                      |           |
| HD CUSTOM DESIGNED LEN                   | SES                                      | ·                                                                  |                     |                      |           |
| (Where lens material/type not o          | therwise listed in the lens form         | desired - where technically possible)                              |                     |                      |           |
|                                          | Any HD SV (Single focus)                 |                                                                    |                     |                      | HD29      |
|                                          | Any HD Multifocal (Twin foo              | cus)                                                               |                     |                      | HD12      |
|                                          | Any HD Bifocals (IRS - HSA)              |                                                                    |                     |                      | HD19      |
|                                          | Any HD Progressives                      | All - add to surfaced SV base lens                                 |                     |                      | HD14      |
|                                          |                                          | in appropriate index                                               |                     |                      |           |
| OCCUPATIONAL TRIFOCALS                   | Single IRS - HSA add to base             | lens                                                               |                     |                      | HD33      |
|                                          | Single Ultor add to base lens            |                                                                    |                     |                      | HD34      |
|                                          | <b>Double IRS</b> add to surfaced S      | V base lens                                                        |                     |                      | HD35      |
|                                          | Double Ultor add to surfaced             | SV base lens                                                       |                     |                      | HD36      |
|                                          | CombiPal Ultor add to bifocal            | base lens                                                          |                     |                      | HD39      |
| IRS BLENDED RD - NON LIST                | ED SEG SIZES                             |                                                                    |                     |                      |           |
| Vary the bifocal size on IRS Bifo        | cal 15mm - 60mm (in addition t           | to IRS 28/40 lens cost)                                            |                     |                      | HD30      |
| ATORIC DIGITAL INNER SURF                |                                          |                                                                    |                     |                      |           |
| Add Digital HD atoric inner surf         | ace to any conventional SV, Bifo         | cal or Varifocal                                                   |                     |                      | HD21      |
| (HIGH ADD BOOST)                         |                                          |                                                                    |                     |                      |           |
| · · · · · · · · · · · · · · · · · · ·    | n conventional bifocal or varifoc        | al by +0.50 to +8.00 in 0.25 steps                                 |                     |                      | HD20      |
| ODD CORRIDOR LENGTHS                     |                                          |                                                                    |                     |                      |           |
| l                                        | s, right and left. Available on Ul       | tor HD & Vector progressives only.                                 |                     |                      | HD22      |
| VARIABLE READING INSETS                  |                                          |                                                                    |                     |                      |           |
| Available on free-form progress          | • •                                      | mm steps                                                           |                     |                      | HD23      |
| Variable cylinder / axis orientati       | on reading portions                      |                                                                    |                     |                      |           |
|                                          |                                          |                                                                    |                     |                      |           |
|                                          |                                          |                                                                    |                     |                      |           |
|                                          |                                          |                                                                    |                     |                      |           |
|                                          | $\overline{}$                            |                                                                    |                     |                      |           |



| Supplementary Lens Charges              |                                                                                 | Price pe | 7 COP |       |
|-----------------------------------------|---------------------------------------------------------------------------------|----------|-------|-------|
|                                         | <b> </b>                                                                        | SV       | Multi | Code  |
| WORKED PRISMS                           | Up to $4.00^{\Delta}$                                                           |          |       | PR01  |
|                                         | $4.25^{\Delta}$ to $6.00^{\Delta}$                                              |          |       | PR02  |
| 10                                      | 6.25 <sup>Δ</sup> to 9.00 <sup>Δ</sup>                                          |          |       | PR03  |
|                                         | 9.25 <sup>Δ</sup> to 12.00 <sup>Δ</sup> (Max Free-form)                         |          |       | PR04  |
|                                         | $12.25^{\Delta}$ to $15.00^{\Delta}$                                            |          |       | PR05  |
|                                         | 15.25 <sup>Δ</sup> to 18.00 <sup>Δ</sup>                                        |          |       | PR06  |
|                                         | $18.25^{\Delta}$ to $21.00^{\Delta}$ and over - where possible                  |          |       | PR07  |
| (CYLINDERS)                             | Up to 6.00DC                                                                    |          |       |       |
|                                         | 6.25DC to 8.00DC (Max Free-form)                                                |          |       | CY06  |
| (10)                                    | 8.25DC to 10.00DC                                                               |          |       | CY07  |
|                                         | 10.25DC to 12.00DC                                                              |          |       | CY09  |
|                                         | 12.25DC to 15.00DC                                                              |          |       | CY10  |
|                                         | 15.25DC and over - where possible                                               |          |       | CY11  |
| (POWERS)                                | Extending sphere power beyond quoted range                                      |          |       |       |
| (************************************** | where available from a standard blank Over published range: 0.25 - 4.00DS steps |          |       | PW09  |
|                                         | 4.25 - 6.00DS steps                                                             |          |       | PW10  |
|                                         | 6.25 - 10.00DS steps                                                            |          |       | PW12  |
|                                         | 10.25DS and over                                                                |          |       | PW13  |
|                                         | 10.2363 dilu over                                                               |          |       | I WIS |
|                                         | Extended sphere power when an extra thick special                               |          |       |       |
| (10)                                    | (over 6.00D) order lens blank is required (where possible)                      |          |       | PW11  |
| LENS FORM                               | Surfaced to a specific request for Stock Base alteration (surfaced Rxs)         |          |       |       |
|                                         | Surfaced to a specific request for flat base where stock availability           |          |       | LF12  |
|                                         |                                                                                 |          |       |       |
|                                         | Surfaced to a specified base curve (non stock) requiring                        |          |       |       |
| (10)                                    | double sided working i.e. plus or minus cyls on front lens surface              |          |       | LF13  |
|                                         | or matching curves for lens bonding                                             |          |       |       |
| FROSTING                                | Frosting surfaced resin lens type                                               |          |       | LF15  |
|                                         | (Plano frosted & black occluder lenses available - see page 7)                  |          |       |       |
| (INDUCED PRISM AT NEAR)                 | Available on FT35, FT45, prism by decentration (where possible)                 |          |       | FTP3  |
|                                         | See page 105 Companion.                                                         |          |       |       |
|                                         |                                                                                 |          |       |       |
| LENS STANDARDS                          | Working to higher tolerances than BSI/ISO (Not applicable to HD production)     |          |       | LS18  |
|                                         |                                                                                 |          |       |       |
|                                         |                                                                                 |          |       |       |
|                                         |                                                                                 |          |       |       |
|                                         |                                                                                 |          |       |       |
|                                         |                                                                                 |          |       |       |
|                                         |                                                                                 |          |       |       |

# Specialist Glazing/Fitting Resin Lenses



| Supplementary Lens                        | & Fitting Charges                                                  |              | Charge<br>£ Per Lens | Comp<br>Code |
|-------------------------------------------|--------------------------------------------------------------------|--------------|----------------------|--------------|
| HALF PAIR MATCHING                        | Matching fitting parameters (heights etc.) on any ½ pair mul       | tifocal lens |                      | HP43         |
| XXS CAMERA/SHOOTING SIGHT                 | requiring hand finishing                                           | Resin        |                      | CM52         |
| UNIQUE FRAME DESIGN/LENS SHAF             | PE Non regular lens radius requiring hand finishing                | Resin        |                      | UF51         |
|                                           | Non regular lens radius achievable by machine finishing            | Resin        |                      | UF53         |
| PROFILE LENTIC EDGING/POLISHING           | g requiring hand finishing                                         | Resin        |                      | PP59         |
| TAPER MACHINE PROFILE/EDGE PO             | LISH                                                               | Resin        |                      | TM58         |
| (HIGH GLOSS HAND POLISH)                  |                                                                    | Resin        |                      | HP58         |
| PRESTO 10                                 | Specialist cut out carrier and powered lens combination            | SV / Bifocal |                      | TO21         |
| FRANKLIN SPLIT BIFOCAL  10)               | Charged in addition to component lens prices                       | Resin        |                      | FS60         |
| FRANKLIN SPLIT TRIFOCAL  15               | Charged in addition to component lens prices                       | Resin        |                      | FS62         |
| CUT EDGE AND FIT CUSTOMER'S O             | WN LENSES                                                          |              |                      |              |
|                                           | F should be supplied at time of ordering.                          |              |                      |              |
| All work is undertaken at customer's o    | -                                                                  |              |                      |              |
|                                           | undertake any order it deems unsuitable.                           |              |                      |              |
| Therefore Group retains the right hot to  | Plastic / Metal Frame                                              | Resin        |                      | CE65         |
|                                           | Supra Frame                                                        | Resin        |                      | CE66         |
|                                           | Rimless / Polymil / Wrap or unusual design                         | Resin        |                      | CE67         |
| CUSTOMER'S OWN LENSES - REMO              |                                                                    |              |                      |              |
|                                           | ses are removed and refitted into frame for tinting                |              |                      |              |
| or coating process. This price is in addi | tion to the process price. All orders accepted at customer's own i |              |                      |              |
|                                           | Plastic / Metal Frame                                              | Resin        |                      | RTRM         |
|                                           | Supra Frame                                                        | Resin        |                      | RTRS         |
|                                           | Rimless or any other frame type                                    | Resin        |                      | RTRR         |
| REMOTE EDGING (Resin Only)                | Uncut lenses supplied edged & prepared ready for fitting into      | o frame      |                      |              |
| (In addition to Uncut price)              | Plastic / Metal                                                    |              |                      | RE42         |
| ( a.a)                                    | Supra                                                              |              |                      | RE44         |
|                                           | Rimless                                                            |              |                      | RE43         |
|                                           |                                                                    |              |                      |              |
|                                           |                                                                    |              |                      |              |
|                                           |                                                                    |              |                      |              |
|                                           |                                                                    |              |                      |              |
|                                           |                                                                    |              |                      |              |
|                                           |                                                                    |              |                      |              |
|                                           |                                                                    |              |                      |              |



# Specialist Glazing/Fitting Resin Lenses

| Supplementary Lens            | & Fitting Charges                                                                                                                                                                                             |                                                | Charge<br>£ Per Lens | Comp<br>Code                                 |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------|----------------------------------------------|
| PLASTIC / METAL               | Full rim <sup>3</sup> ⁄ <sub>4</sub> rim open at temporal                                                                                                                                                     | Resin<br>Resin Only                            |                      | <br>MO22                                     |
| HALF EYE / SHALLOW FRAME      | Depth of 20 mm or less requiring hand edging                                                                                                                                                                  | Resin                                          |                      | HE49                                         |
| POLYMIL                       | Reglaze                                                                                                                                                                                                       | Resin                                          |                      | PL48                                         |
| SUPRA                         | Nylon Cord (S) In-Line Wire / Inverted Supra or special combination (B)                                                                                                                                       | Resin<br>Resin                                 |                      | SU24<br>SU26                                 |
| (add to standard price)       | Replacing Old Nylon<br>Replacing Full Gallery Nylon<br>Modifying Depth of Lens Only<br>Making a new former shape where dummy lens not supplied                                                                |                                                |                      | SU28<br>SU29<br>FM62<br>FM63                 |
| RIMLESS                       | New Rimless (R) Reglaze Glued Rimless (D) Specialist Rimless requiring milling, MEI (L)                                                                                                                       | Resin<br>Resin<br>Resin                        |                      | RM31<br>RG31<br>RS32<br>ME50                 |
| (add to standard price)       | Standard machine edge polish High gloss hand polish Modifying size all round Hand Made Former/Modifying shape in only one direction Grooving Colouring Hand Facetting                                         |                                                |                      | RM33<br>FM64<br>FM65<br>RM36<br>RM37<br>RM38 |
| (add to standard price)       | Soldering extra long fittings - per fitting<br>Replace/fit screws, washers and locknuts - (per set)<br>Replacement Rimless Plugs - (per set)<br>Special Order Components                                      | Quote Req'd                                    |                      | RM34<br>RM39<br>RM40                         |
| WRAP SPORTS/SUN FRAMES        | Full Rim (O) Full Rim with Vented Lens cut outs Half Rim top fitting only (J) Sports Wrap insert Full Rim Sports Wrap insert Supra/Inverted Any Norville Sports Frame Insert (outside Rx range in Sports Cata | logue)                                         |                      | WR56<br>WR58<br>WR57<br>WR60<br>WR61<br>WR59 |
| SWIMMING GOGGLES              | Any Norville Swimming goggle (outside Rx range in Sports Catalo<br>Non-Norville Swimming Goggle requiring proform edge profiling                                                                              | _                                              |                      | SW56<br>SW57                                 |
| NATURAL FRAME MATERIAL/REAL ( | GOLD                                                                                                                                                                                                          | Resin                                          |                      | NF51                                         |
| MONOCLE                       | Drill and chamfer<br>Milled Edge                                                                                                                                                                              | Resin<br>Resin                                 |                      | MO53<br>MO54                                 |
| (ANTIQUE SPECTACLE FRAMES)    | At customers own risk                                                                                                                                                                                         | Resin                                          |                      |                                              |
| LORGNETTE                     | Antique folding type                                                                                                                                                                                          | Resin                                          |                      | L022                                         |
| SPX REGLAZE                   | Reglaze any SPX material frame                                                                                                                                                                                | Resin                                          |                      | RG20                                         |
| (DIAMANTE)                    | Crystal clear or coloured                                                                                                                                                                                     | Single Stone<br>Multi Stones over 5<br>over 10 |                      | DI45<br>DI46<br>DI47                         |

## MINERAL LENS SECTION



# **CROWN GLASS LENSES** 1.500 & 1.523 INDEX

WHITE

PHOTOGREY / PHOTOBROWN

**SOLID TINTS** 

**GG15** 

**B15** 

**DIDYMIUM** 

**POLARISED** 

**BOOSTER** 

**VERSATILE IRS BIFOCALS** 

**TRIFOCALS** 

**MULTIFOCALS** 

**ESOCOOL** 

WHITE

**PGX** 

**PBX** 

1.500

Index

1.523

Index

1.523

Index

1.523

Index

**GG15 B15** 

61.7

**Abbe** 

58.8

**Abbe** 

56.4

**Abbe** 

49.7

**Abbe** 

2.61g/cm<sup>3</sup>

**Density** 

2.61g/cm<sup>3</sup>

**Density** 

2.43g/cm<sup>3</sup>

**Density** 

2.56g/cm<sup>3</sup>

**Density** 

420nm

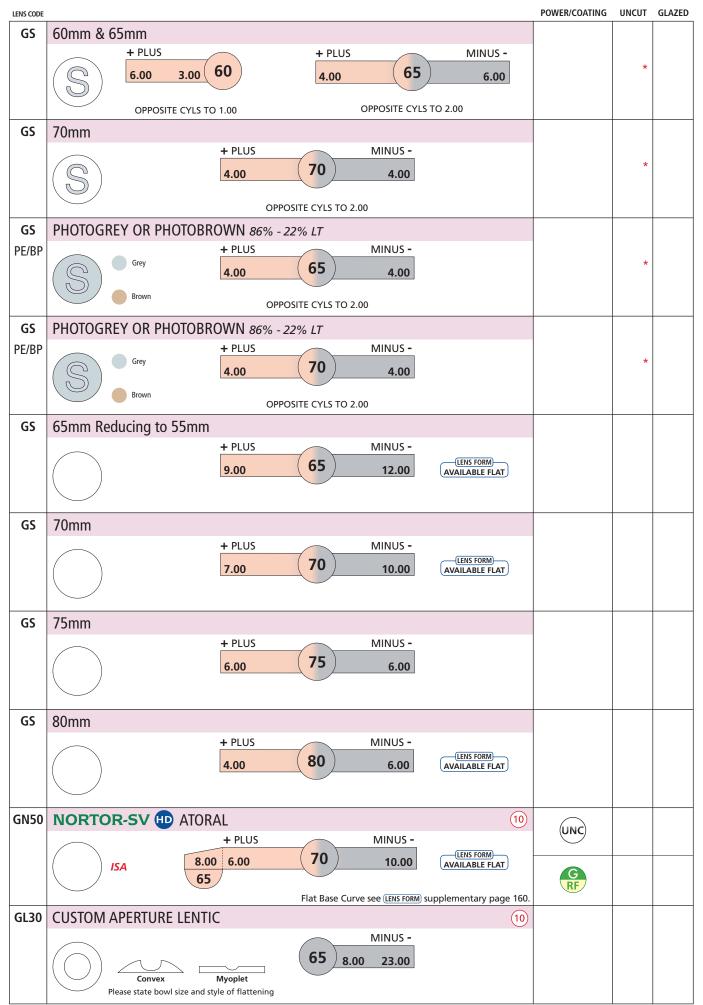
UV

328nm

UV

338nm GR 345nm BR UV

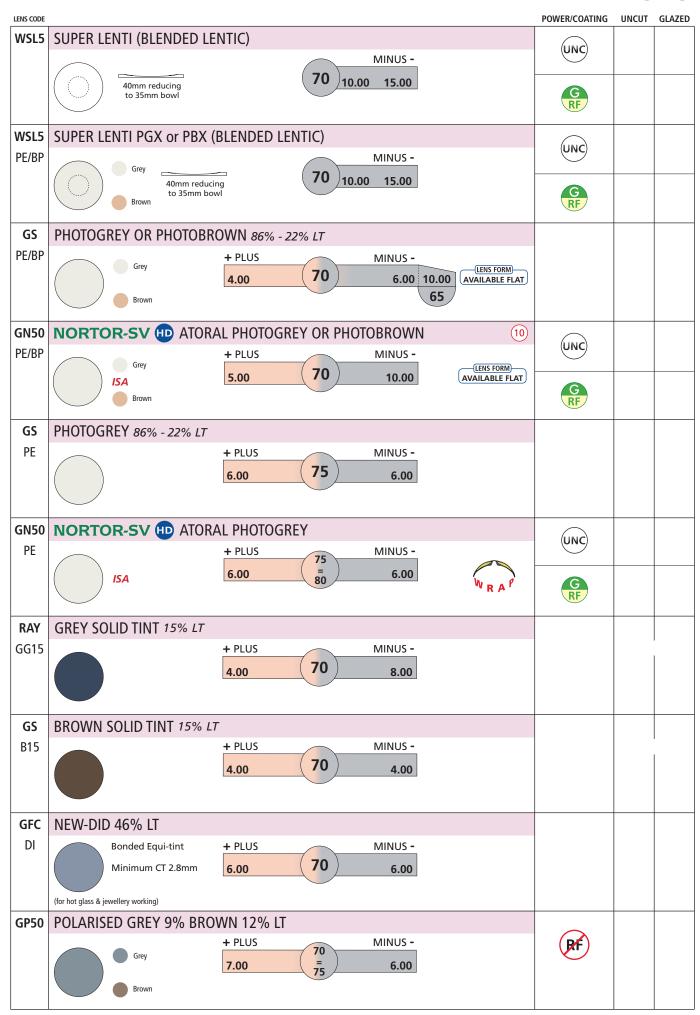



#### GLASS UV420 SV/BIFOCAL/PROGRESSIVE

**1.50** 

ESOCOOL Aquamarine Hue 86% LTF @ 2mm CT. POWER/COATING UNCUT LENS CODE **GSUV** 65mm UV420 + PLUS MINUS -65 4.00 4.00 65mm UV420 NORTOR-SV HD **GNUV** (UNC) + PLUS MINUS -65 4.00 4.00 G RF Booster HD UV420 BG5U (UNC) + PLUS MINUS -Order as standard T N/A DISTANCE SV with 65 Booster Code 4.00 4.00 BOOSTER "A" = +037BOOSTER "B" = +062 16mm BOOSTER "C" = +087 Booster reading zone VERSATILE OFFICE HD UV420 OG5U (UNC) + PLUS MINUS -T N/A Order by 65 4.00 4.00 reading Rx G RF Distance PDs DEGRESSIONS -0.50, -0.75, -1.00, -1.25, -1.50, -1.75, -2.00, -2.25, -2.50 DS FG5U HD IRS 28mm/40mm BIFOCAL UV420 (UNC MINUS -+ PLUS T N/A 65 4.00 4.00 new ISB G RF Adds 0.75 to 3.00 in 0.25 steps 40mm 4G5U VECTOR & VECTOR EXTRA SHORT ⊕ UV420 VG5U (UNC) + PLUS MINUS -65 3.00 4.00 70 G RF **AUTOSELECT** Adds 0.75 to 4.50 in 0.25 steps 15mm SG5U HAWK HD UV420 (UNC + PLUS MINUS -65 ISP 3.00 4.00 70 Adds 0.75 to 4.50 in 0.25 steps **AUTOSELECT** 15mm NG5U **HD** UV420 (UNC) + PLUS MINUS -65 3.00 4.00 70 Adds 0.50 to 4.50 in 0.25 steps **AUTOSELECT** Available designs - General/Outdoor/Desk 15mm **PRODRIVE HD UV420** YG5U (UNC) + PLUS MINUS -65 3.00 4.00 70 G Adds 0.50 to 4.50 in 0.25 steps **AUTOSELECT** 15mm Special Note: Glass UV 420 is a mineral product suitable for chemical strengthening. A minimum centre substance of 1.5mm meets BS EN ISO 12311 Level 1(E) Strengthening A minimum centre substance of 3.3mm meets BS EN ISO 12311 Level 2(E) Strengthening

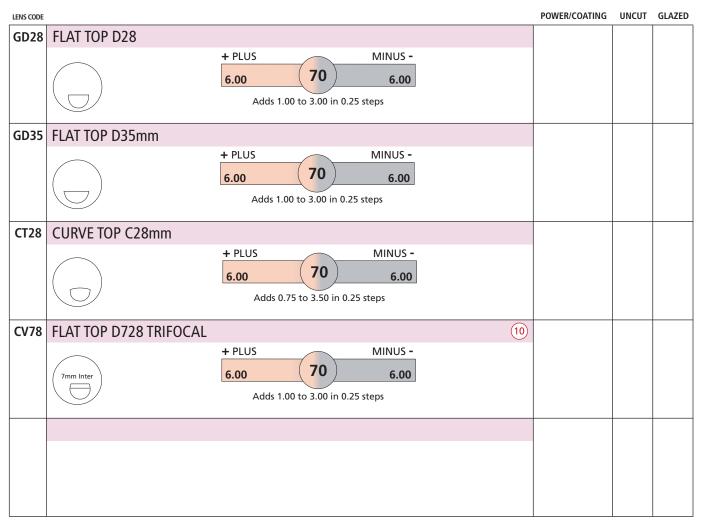
#### **GLASS SINGLE VISION**



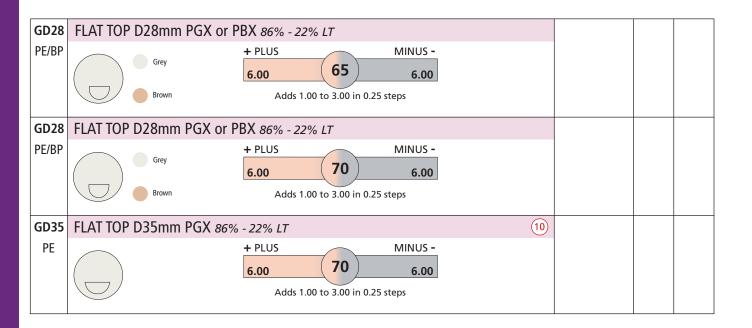





#### **GLASS SINGLE VISION**


1.523

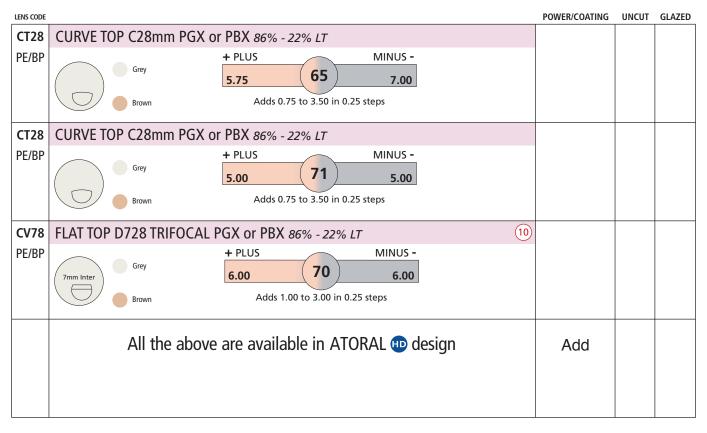



1.523

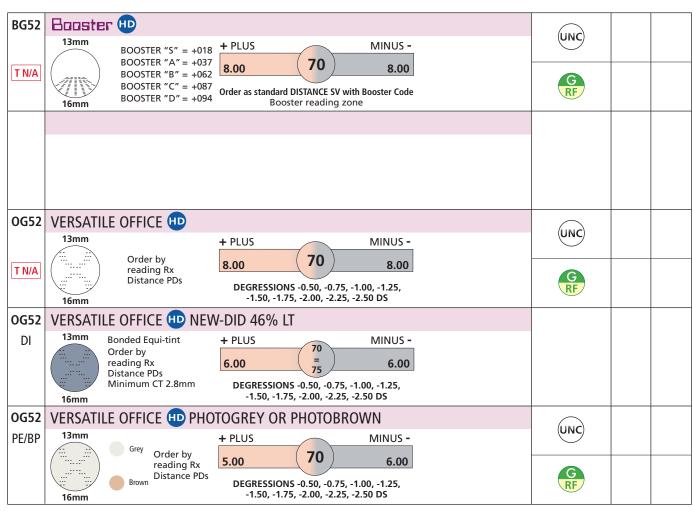
### **GLASS BIFOCALS & TRIFOCALS WHITE**






### **GLASS BIFOCAL PHOTOCHROMICS**



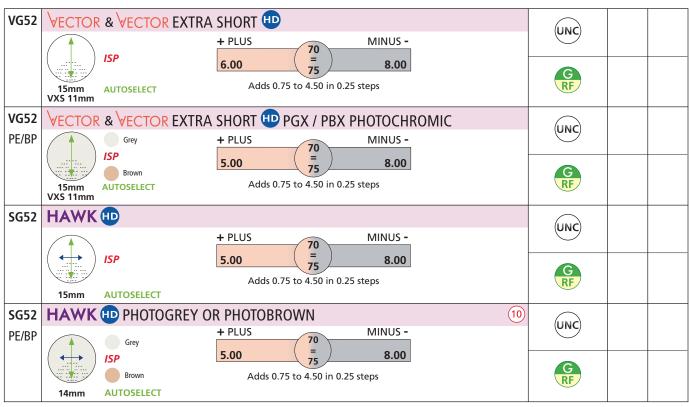



# GLASS BIFOCAL & TRIFOCAL PHOTOCHROMICS

1.523



# GLASS WHITE & PHOTOCHROMIC FREE-FORM HD DESIGNS








| LENS CODE    |                                                                     | POWER/COATING | UNCUT | GLAZED |
|--------------|---------------------------------------------------------------------|---------------|-------|--------|
| FG52         | HD IRS 28mm/40mm BIFOCAL                                            |               |       |        |
| T N/A 40mm   | + PLUS MINUS -  8.00 70 10.00  Adds 0.75 to 3.00 in 0.25 steps      | G             |       |        |
| 4G52         |                                                                     |               |       |        |
| GR28         | IRS 28mm/40mm BIFOCAL NEW-DID 46% LT                                |               |       |        |
| DI           | Bonded Equi-tint + PLUS MINUS -  1SB Minimum CT 2.8mm 6.00 = 6.00   |               |       |        |
| 40mm<br>4R28 | Adds 0.75 to 3.00 in 0.25 steps (for hot glass & jewellery working) |               |       |        |
| FG52         | IRS 28mm/40mm BIFOCAL PHOTOGREY OR PHOTOBROWN                       |               |       |        |
| PE/BP        | + PLUS MINUS -                                                      | UNC           |       |        |
|              | 5.00 (70) 6.00                                                      |               |       |        |
| 40mm<br>4G52 | Adds 0.75 to 3.00 in 0.25 steps                                     | G             |       |        |
| 1032         |                                                                     |               |       |        |
|              |                                                                     |               |       |        |
|              |                                                                     |               |       |        |
|              |                                                                     |               |       |        |
|              |                                                                     |               |       |        |

# GLASS HD PROGRESSIVES




AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Wariable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.







AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Wariable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.



# MINERAL LENSES 1.60 INDEX

WHITE
PHOTOGREY / PHOTOBROWN
SOLID TINTS
GG15
POLARISED

BOOSTER

VERSATILE

IRS BIFOCALS

MULTIFOCALS

**WHITE** 

**PBX** 

**PGX** 

1.60

Index

41

**Abbe** 

2.63g/cm<sup>3</sup>

325nm

**Density** 

UV

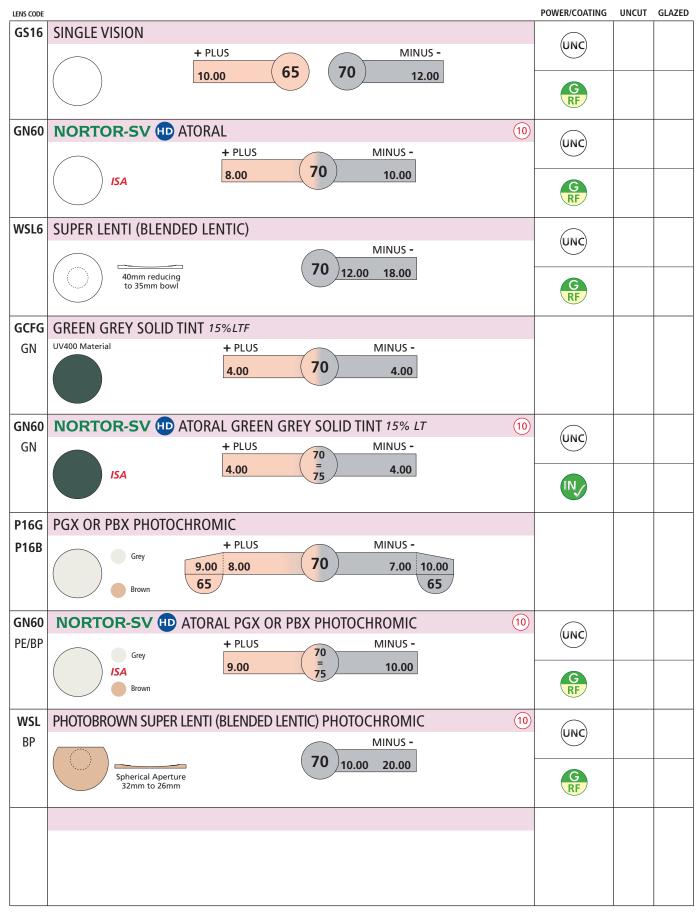
1.60 1.60

Index

42 42

Abbe

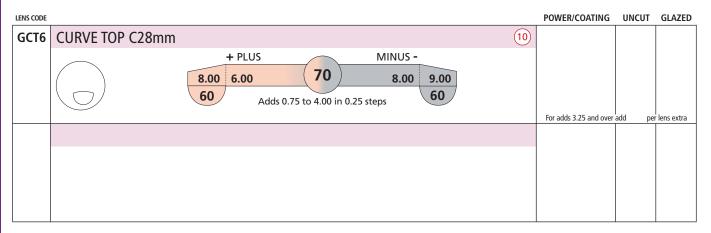
2.70g/cm<sup>3</sup> 2.80g/cm<sup>3</sup>


**Density** 

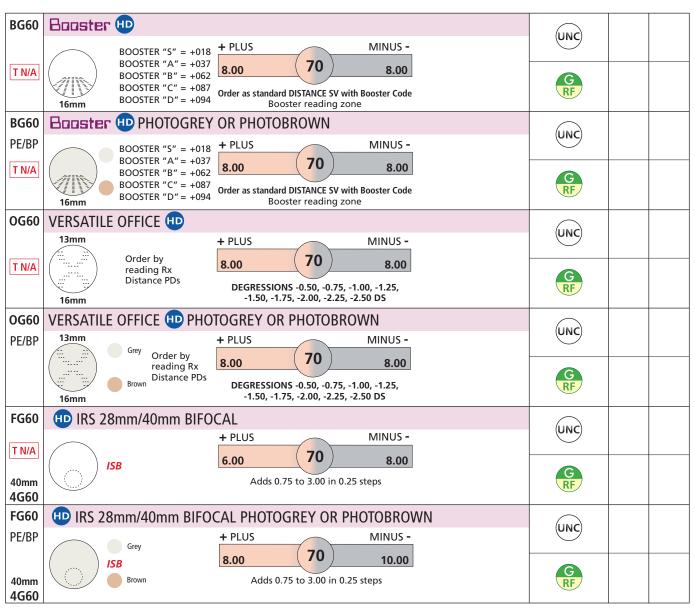
342nm

UV



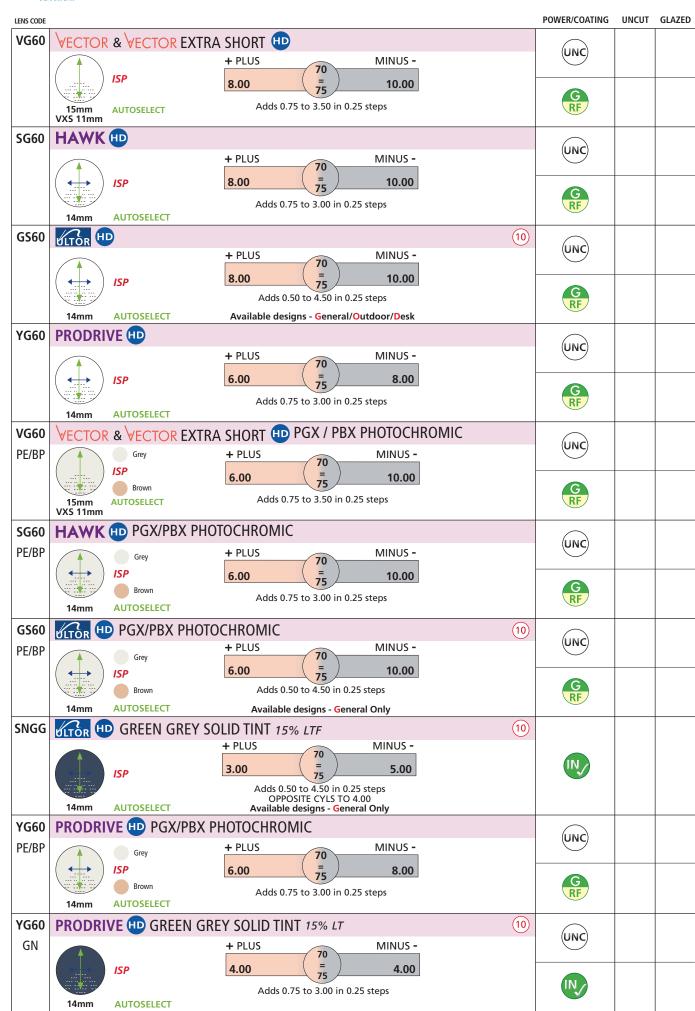

# **GLASS SINGLE VISION**




PGX 88% - 32% LT PBX 84% - 27% LT

# **GLASS BIFOCALS**






# GLASS WHITE & PHOTOCHROMIC FREE-FORM BIFOCAL & DEGRESSIVES



PGX 88% - 32% LT PBX 84% - 27% LT

# **GLASS PROGRESSIVES**





# MINERAL LENSES 1.70 INDEX 1.76 INDEX

WHITE
PHOTOGREY - BONDED EQUITINT
PHOTOBROWN - BONDED EQUITINT
X RAY GLASS (n=1.76)

BOOSTER

VERSATILE

IRS BIFOCALS

MULTIFOCALS

1.76

Index

30

**Abbe** 

4.80g/cm<sup>3</sup>

**Density** 

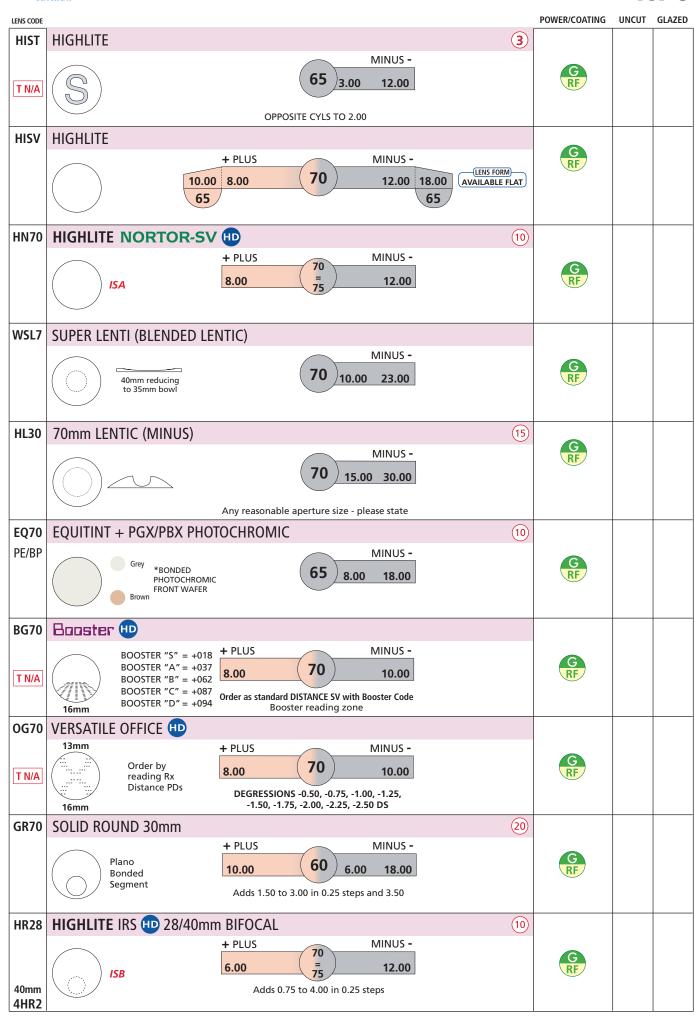
1.70

Index

35.8

**Abbe** 

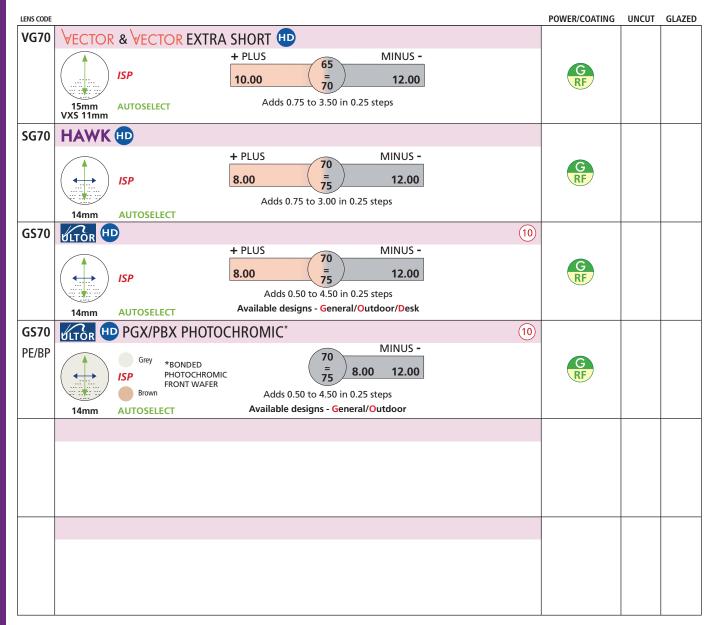
3.15g/cm<sup>3</sup>


**Density** 

330nm

UV

# **GLASS SINGLE VISION & BIFOCALS**


1.70



# 1.70

# **GLASS PROGRESSIVES**





1.76

# **GLASS X RAY FILTER**



AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Wariable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.



# MINERAL LENSES 1.80 & 1.90 INDEX

WHITE PHOTOGREY - BONDED EQUITINT PHOTOBROWN - BONDED EQUITINT

**BOOSTER MULTIFOCALS** 

1.80

Index

1.89

Index

34.4

**Abbe** 

30.4

**Abbe** 

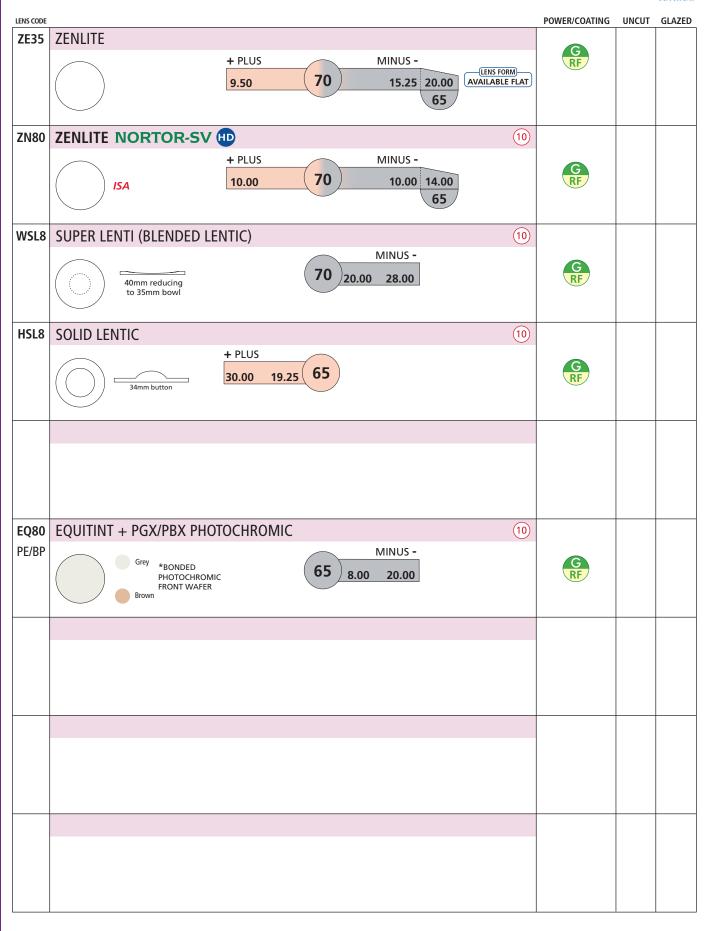
3.65g/cm<sup>3</sup>

**Density** 

3.99g/cm<sup>3</sup>

**Density** 

327nm


UV

335nm

UV

# **GLASS SINGLE VISION**







# **GLASS BIFOCALS & PROGRESSIVES**

1.80

| LENS CODE    |                                                     |                                                                         |                    | POWER/COATING | UNCUT | GLAZED |
|--------------|-----------------------------------------------------|-------------------------------------------------------------------------|--------------------|---------------|-------|--------|
| ZR28         | ZENLITE IRS IID 28/40mm                             | n BIFOCAL                                                               |                    |               |       |        |
| 40mm<br>4ZR2 | ISB                                                 | + PLUS MINUS -  8.00                                                    |                    | G             |       |        |
| GR80         | SOLID ROUND 30mm  Plano Bonded Segment              | MINUS -  60 8.00 20.00  Adds 1.50 to 3.00 in 0.25 steps and 3.50        | 20                 | G             |       |        |
|              |                                                     |                                                                         |                    |               |       |        |
| VG80         | VECTOR & VECTOR EXTR  ISP  15mm AUTOSELECT VXS 11mm | A SHORT (HD)  MINUS -  = 75 6.00 20.00  Adds 0.70 to 3.50 in 0.25 steps | Max<br>prism<br>3∆ | G             |       |        |
| SG80         | ISP 14mm AUTOSELECT                                 | MINUS - = 75 6.00 16.00  Adds 1.00 to 3.00 in 0.25 steps                |                    | G             |       |        |
| GS80         | ISP  14mm AUTOSELECT                                | + PLUS MINUS -  6.00                                                    |                    | G             |       |        |
|              |                                                     |                                                                         |                    |               |       |        |
|              |                                                     |                                                                         |                    |               |       |        |
|              |                                                     |                                                                         |                    |               |       |        |

AUTOSELECT - SHORT AND LONG CORRIDOR AVAILABILITY COMPUTER SELECTION DETERMINED BY FITTING HEIGHT SPECIFIED

Variable inset - 0 to 5.00mm in 0.50mm steps. Please specify at time of ordering.

# **GLASS SINGLE VISION & BIFOCAL**



| LENS CODE             |                                                                                           | POWER/COATING | UNCUT | GLAZED |
|-----------------------|-------------------------------------------------------------------------------------------|---------------|-------|--------|
| HS19                  | MINLITE                                                                                   |               |       |        |
| T N/A                 | MINUS -  65 6.00 12.00  OPPOSITE CYLS TO 2.00                                             | G             |       |        |
| HI19                  | MINLITE Reducing to 55mm                                                                  |               |       |        |
|                       | MINUS -  60 12.25 20.00  LENS FORM AVAILABLE FLAT                                         | GRF           |       |        |
| GN90                  | MINLITE NORTOR-SV (11) ATORAL                                                             |               |       |        |
|                       | MINUS - 70 6.00 10.00 15.00 65                                                            | G<br>RF       |       |        |
| WSL9                  | SUPER LENTI (BLENDED LENTIC)                                                              |               |       |        |
|                       | 40mm reducing to 35mm bowl  MINUS -  70 20.00 25.00                                       | G<br>RF       |       |        |
| EQ90                  | EQUITINT + PGX/PBX PHOTOCHROMIC 10                                                        |               |       |        |
| PE/BP                 | Grey *BONDED PHOTOCHROMIC FRONT WAFER  Brown  MINUS -  65  10.00  20.00                   | GRF           |       |        |
| GR90                  | SOLID ROUND 30mm  Plano Bonded Segment  Adds 1.50 to 3.00 in 0.25 steps and 3.50          | G             |       |        |
| FG90                  | IRS HD 28/40mm BIFOCAL 10                                                                 |               |       |        |
| 40mm<br>4 <b>G</b> 90 | MINUS - 70 10.00 15.00  Adds 0.75 to 3.50 in 0.25 steps                                   | G             |       |        |
| VG90                  | VECTOR & VECTOR EXTRA SHORT ₩                                                             |               |       |        |
|                       | MINUS -  70 10.00 15.00  Adds 0.75 to 3.50 in 0.25 steps  Adds 0.75 to 3.50 in 0.25 steps | G             |       |        |
| GS90                  | WITOR HD                                                                                  |               |       |        |
|                       | Adds 0.50 to 4.50 in 0.25 steps  Available designs - General/Outdoor/Desk                 | G             |       |        |







MARE

✓ Cleancoat\*

Supplementary to lens price

| Order Code | Index | Price per lens |
|------------|-------|----------------|
| MARE       | ALL   |                |

**Emerald Reflex Colour** 



Sun Lenses Inside Surface UV Block

✓ MARE coat (inside surface RF only)

\* glazed orders only

Cleancoat

|            | supplementary to lens price |                |  |  |
|------------|-----------------------------|----------------|--|--|
| Order Code | Index                       | Price per lens |  |  |
| INAR       | 1.523                       |                |  |  |
|            | 1.60                        |                |  |  |

**Emerald Reflex Colour** 



**BROWN (LT)** 

- ✓ Glass tints vacuum deposition
- ✓ Mono colours only

Supplementary to lens price

|               | Index        | Price per lens |
|---------------|--------------|----------------|
| Brown<br>Tint | 1.523 to 1.9 |                |

|              | Index        | Price per lens |
|--------------|--------------|----------------|
| Grey<br>Tint | 1.523 to 1.9 |                |

| GREY (LT) | G80 | G50 | G20 |
|-----------|-----|-----|-----|

# **GLASS VACUUM COATING OPTIONS CHART**

| n = Material | MAR Green | B80 | B50 | B20 | G80 | G50 | G20 |
|--------------|-----------|-----|-----|-----|-----|-----|-----|
| 1.523        | ✓         | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   |
| 1.600        | ✓         | ✓   | 1   | ✓   | 1   | ✓   | ✓   |
| 1.700        | ✓         | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   |
| 1.800        | ✓         | ✓   | 1   | ✓   | 1   | ✓   | ✓   |
| 1.900        | ✓         | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   |

We regret no other tint colours, graduated tints or combinations available

\*Note: Glass solid tinted lenses also available see pages 143, 147, 149 and 151

MARE coat can be added to brown or grey glass vac tints but this is a separate charge i.e. - add MARE to your glass code (e.g. B80 + MARE or B80 + INAR)



MIRROR COATS can be applied to glass lenses but remember the Mirror Golden Rule: The substrate needs to be **TINTED** in the recommended base colour and density (changing it will alter the mirror colour). MIRROR COLOURS can be applied to any mineral tinted base lens, solid or vac tint 20% LT tinted.

Supplementary to lens price

**Mirror Colour** Index Price per lens Application to Solid Tint GREY 1.523 15% LT Blue - BM 1.523 & 1.60 Grey Green - EM Any White Base Application to White Lens + GT Grey colour coat + Mirror + (N) Silver - SM **GF Mirror Colour** Index Price per lens Red - RM Application to Solid Tint BROWN 1.523 15% LT 1.523 Only **Brown** Yellow - YM Purple - PM Base Any White Application to White Lens + GT Brown colour coat + Mirror + (N) Copper - CM **GF** Additional to base lens

# **Glass Conventional Surfaced Lenses**



| Supplementary L       | Lens Charges additional to le                                           | ns charge | SV Price p | er lens £<br>Multi | Comp<br>Code |
|-----------------------|-------------------------------------------------------------------------|-----------|------------|--------------------|--------------|
| (WORKED PRISMS)       | Up to $4.00^{\Delta}$                                                   |           |            |                    | PR01         |
| (10)                  | 4.25 <sup>Δ</sup> to 6.00 <sup>Δ</sup>                                  |           |            |                    | PR02         |
| (Where possible from  | 6.25 <sup>Δ</sup> to 9.00 <sup>Δ</sup>                                  |           |            |                    | PR03         |
| standard lens blanks) | 9.25 <sup>Δ</sup> to 12.00 <sup>Δ</sup>                                 |           |            |                    | PR04         |
|                       | 12.25 <sup>Δ</sup> to 15.00 <sup>Δ</sup>                                |           |            |                    | PR05         |
|                       | 15.25 <sup>Δ</sup> to 18.00 <sup>Δ</sup>                                |           |            |                    | PR06         |
|                       | 18.25 <sup>Δ</sup> to 21.00 <sup>Δ</sup>                                |           |            |                    | PR07         |
|                       | 21.25 <sup>a</sup> and over - where possible                            |           |            |                    | PRS1         |
| (CYLINDERS)           | Up to 6.00DC                                                            |           |            |                    |              |
| (10)                  | 6.25DC to 9.00DC                                                        |           |            |                    | CY06         |
| (Where possible from  | 9.25DC to 12.00DC                                                       |           |            |                    | CY07         |
| standard lens blanks) | 12.25DC to 15.00DC                                                      |           |            |                    | CY09         |
|                       | 15.25DC to 18.00DC                                                      |           |            |                    | CY10         |
|                       | 18.25DC to 21.00DC                                                      |           |            |                    | CY11         |
|                       | 21.25DC and over - where possible                                       |           |            |                    | CYS1         |
|                       | 21.23DC and over - where possible                                       |           |            |                    | CISI         |
| POWERS                | Extending sphere power beyond stated catalogue range                    |           |            |                    |              |
|                       | where available from a standard blank Outside range: 0.25               | - 4.00D   |            |                    | PW09         |
|                       | 4.25                                                                    | - 6.00D   |            |                    | PW10         |
|                       | 6.25 -                                                                  | 10.00D    |            |                    | PW12         |
|                       | 10.25D a                                                                | nd over   |            |                    | PW13         |
| (10)                  | Extended sphere power when an <b>extra thick special</b>                |           |            |                    |              |
|                       | order lens blank is required (where possible)                           |           |            |                    | PW11         |
|                       |                                                                         |           |            |                    |              |
| LENS FORM             | Surfaced to a specific request for flat base where available            |           |            |                    | LF12         |
|                       | Full diameter wafers (for bonding) surfaced to specific curves          |           |            |                    |              |
| 10                    | Surfaced to a specified base curve (non stock) requiring                |           |            |                    | LF13         |
|                       | double sided working i.e. plus or minus cyls on front surface           |           |            |                    |              |
|                       | including flat or curved bonding wafers - additional to material charge |           |            |                    |              |
| FROSTING              | Frosting                                                                |           |            |                    | LF15         |
| VERY REDUCED          | Surfaced GLASS wafer where diameter is                                  |           |            |                    |              |
| DIAMETER LENSES       | 45mm or smaller (e.g. camera sight - positive Rx only)                  |           |            |                    | WAF15        |
| 5                     |                                                                         |           |            |                    |              |
|                       |                                                                         |           |            |                    |              |
|                       |                                                                         |           |            |                    |              |
|                       |                                                                         |           |            |                    |              |
|                       |                                                                         |           |            |                    |              |
|                       |                                                                         |           |            |                    |              |
|                       |                                                                         |           |            |                    |              |
|                       |                                                                         |           |            |                    |              |
|                       |                                                                         |           |            |                    |              |
|                       |                                                                         |           |            |                    |              |



# Glass Surfaced Lenses

| Supplementary L               | upplementary Lens Charges                                                              |    | mentary<br>er lens £ | Comp |
|-------------------------------|----------------------------------------------------------------------------------------|----|----------------------|------|
| Supplementary L               | ens charges                                                                            | SV | Multi                | Code |
| XXL INCREASED EFFECTIVE       | DIAMETER                                                                               |    |                      |      |
|                               | Increase the effective blank diameter up to 10mm                                       |    |                      | HD26 |
| •                             | Increase the effective blank diameter over 10mm where possible                         |    |                      | HD27 |
| Ultor or Sportpal Progressive | Increase the effective diameter to max achievable                                      |    |                      | HD02 |
| BESPOKE LENS DESIGN           |                                                                                        |    |                      |      |
| ATORIC DIGITAL INNER SUR      | FACE                                                                                   |    |                      |      |
|                               | face to any conventional SV or Bifocal                                                 |    |                      | HD2  |
| HIGH ADD BOOST                | ,                                                                                      |    |                      |      |
|                               | ailable on conventional bifocals or varifocals                                         |    |                      | HD2  |
| ODD CORRIDOR LENGTHS          |                                                                                        |    |                      |      |
|                               | hs, right and left. Available on Ultor & Vector progressives only.                     |    |                      | HD2  |
| VARIABLE READING INSETS       |                                                                                        |    |                      |      |
| Available on Ultor and Vector | progressive lens types. 0 to 5mm                                                       |    |                      | HD2  |
| EXTREME INSET PLACEMEN        |                                                                                        |    |                      |      |
| Grossly decentered ±20mm      |                                                                                        |    |                      |      |
| IRS BLENDED 28/40mm RO        | UND BIFOCALS                                                                           |    |                      |      |
|                               | ocal 15mm - 45mm (in addition to IRS lens cost)                                        |    |                      | HD3  |
| HIGH CYLINDERS                |                                                                                        |    |                      |      |
| All HD lens types             | Up to 2.00DC <b>over</b> stated range                                                  |    |                      | HD0  |
| • •                           | 2.25 to 4.00DC <b>over</b> stated range                                                |    |                      | HD2  |
| •                             | 4.00DC and over where achievable                                                       |    |                      |      |
| PRISM                         |                                                                                        |    |                      |      |
|                               | Glass max prisms 5 <sup>△</sup> charged as conventional surfaced pricing See page 160. |    |                      | HD1  |
| HD CUSTOM DESIGNED LEN        | NSES )                                                                                 |    |                      |      |
| (Where lens material/type not | otherwise listed in the lens form desired - where technically possible)                |    |                      |      |
|                               | Any HD SV (Single focus)                                                               |    |                      | HD29 |
|                               | Any HD Multifocal (Twin focus)                                                         |    |                      | HD12 |
|                               | Any HD Bifocals (IRS - HSA)                                                            |    |                      | HD19 |
|                               | Any HD Progressives All - add to surfaced SV base lens                                 |    |                      | HD14 |
| OCCUPATIONAL TRIFOCALS        | Trifocals: Single IRS add to base lens                                                 |    |                      | HD3: |
|                               | Single Ultor add to base lens                                                          |    |                      | HD3  |
|                               | <b>Double IRS</b> add to surfaced SV base lens                                         |    |                      | HD3  |
|                               | <b>Double Ultor</b> add to surfaced SV base lens                                       |    |                      | HD3  |
|                               | CombiPal Ultor add to bifocal base lens                                                |    |                      | HD3  |
|                               |                                                                                        |    |                      |      |
|                               |                                                                                        |    |                      |      |
|                               |                                                                                        |    |                      |      |
|                               |                                                                                        |    |                      |      |
|                               |                                                                                        |    |                      |      |
|                               |                                                                                        |    |                      |      |
|                               |                                                                                        |    |                      |      |
|                               |                                                                                        |    |                      |      |
|                               |                                                                                        |    |                      |      |
|                               |                                                                                        |    |                      |      |
|                               |                                                                                        |    |                      |      |

# Specialist Glazing/Fitting Glass Lenses

Full rim



Supplementary Lens Charges

Charge £ Comp

PLASTIC / METAL

(HALF EYE / SHALLOW FRAME) Depth of 20 mm or less requiring hand edging

SUPRA Nylon Cord (S)

SUPRA EXTRAS Replacing Old Nylon

(add to standard price) Replacing Full Gallery Nylon

Making a physical former shape where dummy lens not supplied

NATURAL FRAME MATERIAL/REAL GOLD

ANTIQUE SPECTACLE FRAMES At customers own risk

**LORGNETTE** Antique folding type

(HALF PAIR MATCHING) Matching fitting parameters on any ½ pair multifocal lens

**XXS CAMERA/SHOOTING SIGHT**Requiring hand finishing (reduced diameter surfacing charge may be applicable - see page 136)

UNIQUE FRAME DESIGN/LENS SHAPE Non regular lens radius requiring hand finishing where possible

GLASS SANDWICH BONDING

Bonding charge additional to Rx components

i.e. two lenses (white/tinted/photochromic)

**DIVING MASKS**Profile edging & fitting mineral lenses requiring hand finishing <u>including</u> bonding

additional to Rx components

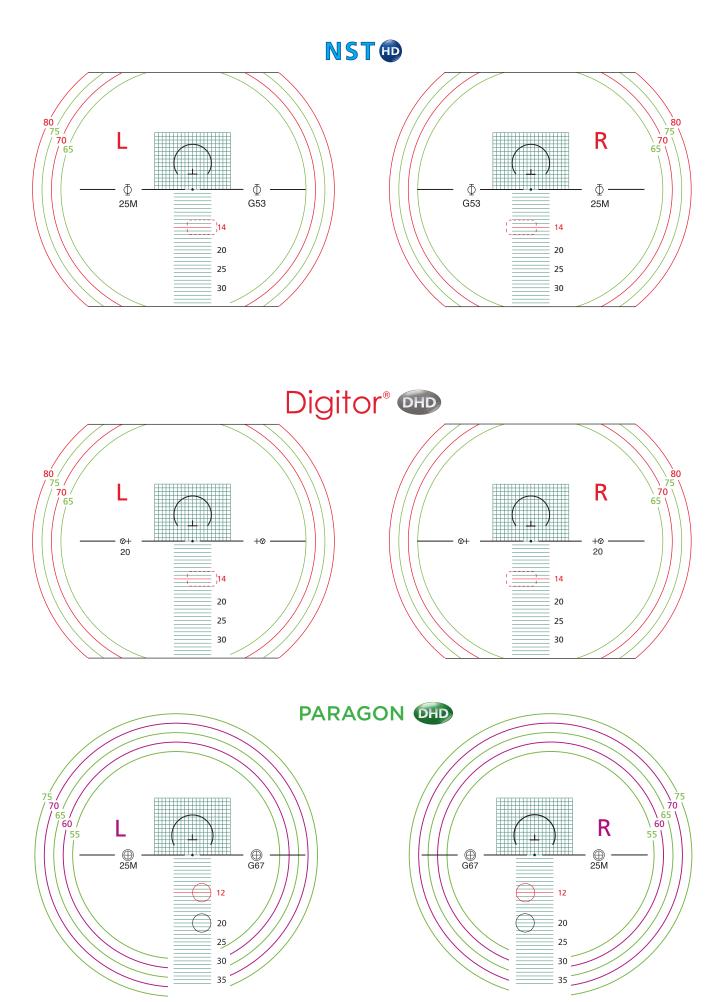
 FRANKLIN SPLIT BIFOCAL
 Charged in addition to component lens prices

 FRANKLIN SPLIT TRIFOCAL
 Charged in addition to component lens prices

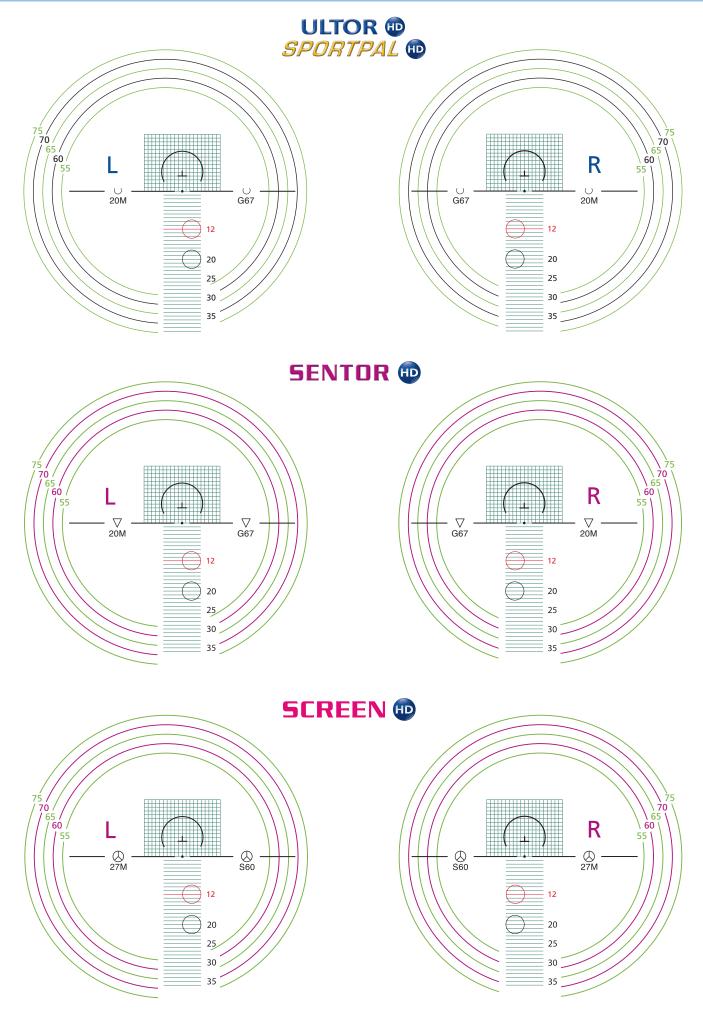
CUT EDGE AND FIT CUSTOMER'S OWN LENSES

Full information on the lenses to be CEF should be supplied at time of ordering.

All work is undertaken at customer's own risk.

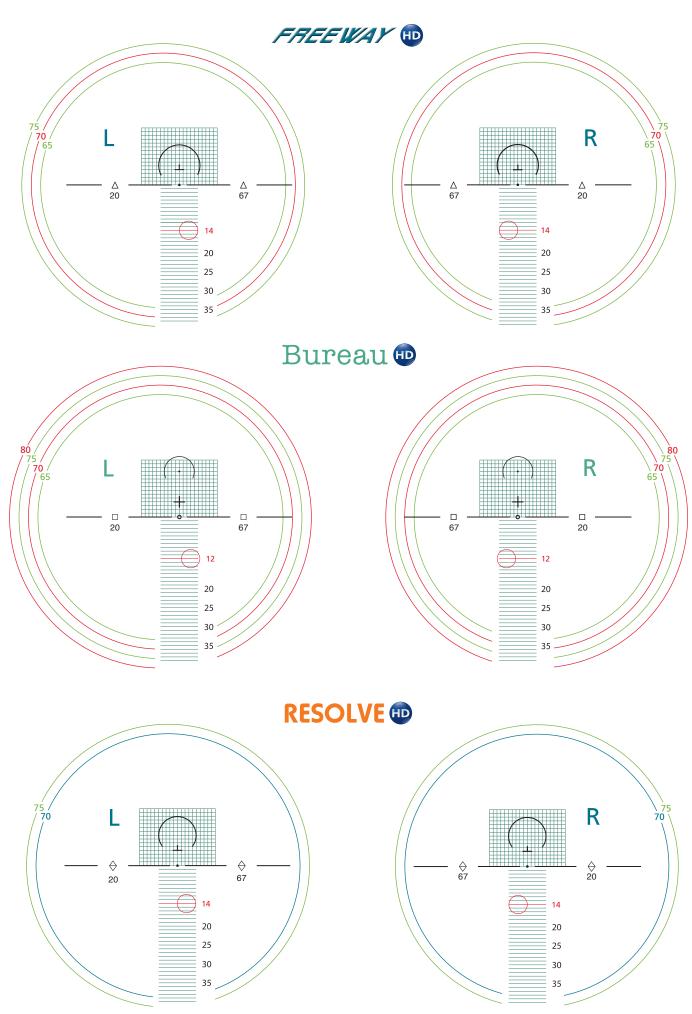

Norville Group retains the right not to undertake any order it deems unsuitable.

Plastic / Metal Frame

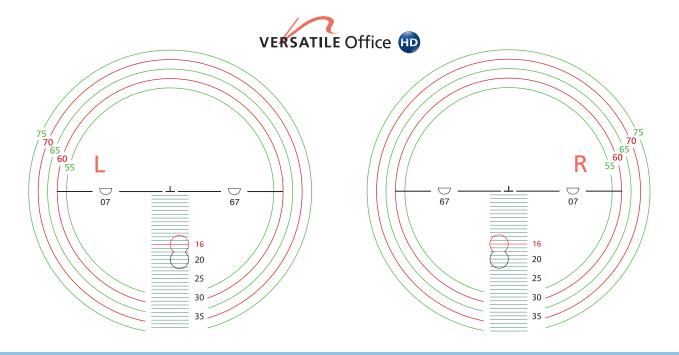

Supra Frame

We regret we are unable to currently offer a remote shaping service for glass lenses.

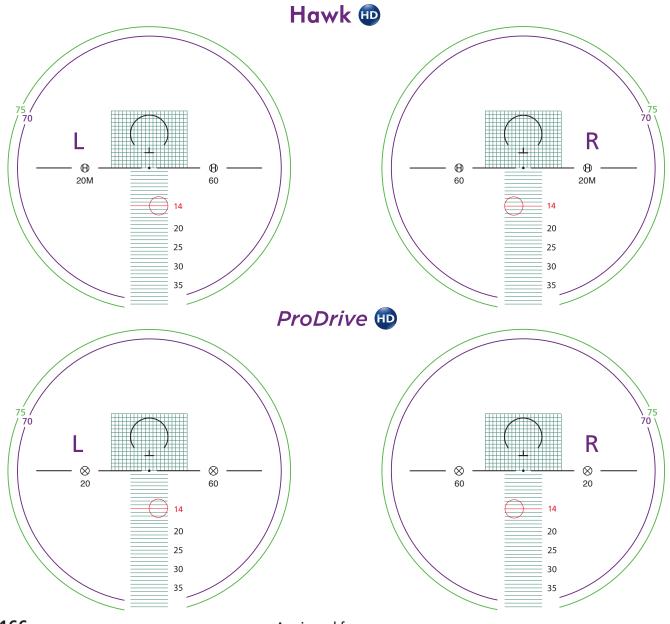





# **Progressive Lens Remarking Templates**

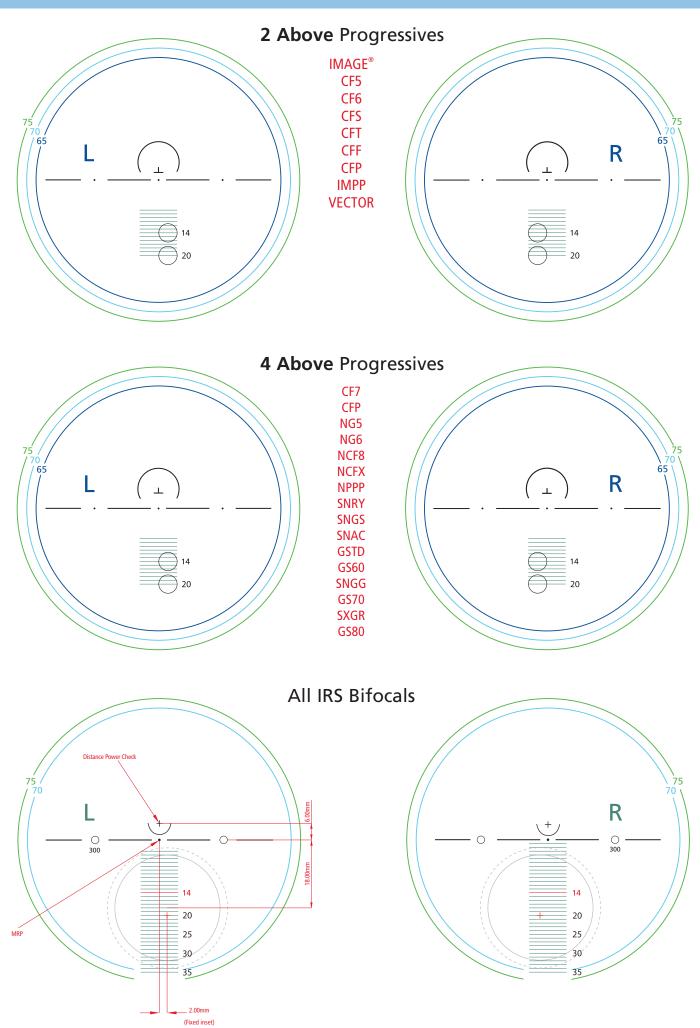



164


# **Progressive Lens Remarking Templates**



# **Degressive Lens Remarking Templates**




# **Progressive Lens Remarking Templates - Mineral**



**166** As viewed from rear

# **Progressive Lens Remarking Templates**



# **Important Operational Notes**

# **Pricing**

- 1. All prices quoted per lens in £ Pounds Sterling.
- 2. Prices exclude V.A.T., postage and packing.
- 3. A minimum invoice charge of £3.00 is applicable.
- Lenses are charged according to highest total power (plus sphere in minus cylinder / minus sphere in plus cylinder form).

# **Rx Ordering**

- Norville manufactures to lens standards as defined in BS/EN/ISO Standards EN/ISO 8980 parts 1, 2, 3 and 4 and BS2738-1998. and mounted spectacle standard BS EN ISO 21987
- 2. It is normal practice to ensure correct horizontal centring by working prism or supplying a larger diameter lens unless specified. XXL bodily decentration is available on free-form digital design lenses see supplementary charges (page 136).
- 3. All surfaced and stock lenses in resin or glass are supplied in minus cylinder form on the rear surface with manufacturer's standard front curve. We may be able to surface special form options in some cases; supplementary charges will however apply.
- 4. Prepare & Advise service for glazed orders is available.

  We will require a shape or specific diameter and will design the lenses based on this information and advise you when to forward frame.

  We cannot accept responsibility for lenses which subsequently are found to be too thick when glazed due to incorrect ordering.

- When ordering half pair bifocals or multifocals the height of the optical centre and any prism thinning instructions should be stated at time of ordering.
- Lens diameters stated
  within this catalogue are
  normally the maximum
  diameter available; this
  diameter will reduce as the
  power requirement
  increases as standard.
- Replacing half pairs of Tinted Multicoated or Transitions is not advisable.
- 8. Coating or tinting patients' own lenses should be avoided unless the complete history of the lens is known. Only available on 1.50 resin uncoated lens types.
- 9. All tints within the catalogue are stated in L.T.F. not ABS.
- 10. Progressive non-tolerance scheme is available on Norville own brand products to the range of prescriptions shown against the product type. Powers outside the stated range or products fitted below the minimum suggested fitting height from lowest tangent or less than 10mm from top rim cannot benefit from our non-tolerance scheme. Slabbed off progressives and degressive lenses are also excluded.

We offer a standard 90 day return option. Claims must be made within 90 days of the purchase date. To claim your Norville nontolerance voucher you must submit the lenses with the original order together with a claim form; this form is available from our Rx Sales Department, email sales@ norville.co.uk or visit our website www.norville.co.uk and click on download.

- 11. Where two differing indices are used in the same spectacle Norville cannot always guarantee a coating match.
- 12. When orders are received they are automatically entered into the production system. We regret therefore that we are unable to cancel an order once this manufacturing process has commenced (see Item 3.3, Terms & Conditions Page 169).
- 13. The greatest care is taken when handling used spectacles. We can however accept no responsibility for material failure; this will also include coating or re-edging of customer's own lenses. All orders are only accepted at customer's own risk.
- 14. When ordering glazed single vision we always try where possible to supply stock finished lenses. However, surfacing for substance is required for smaller or shallower eyeshapes, or where rimless or supra mounts are being glazed. On full rim frames we cannot be held responsible for a thicker than necessary lens edge substance where we are requested to supply a stock lens to a specific diameter.
- For further technical details including tint transmission charts please refer to the Norville RX Companion.
- For further technical details on our range of Free-form inner surface lens options, please refer to the Digital Free-form Directory.
- 17. Norville only recommend TRIVEX or TRIBRID 1.60 for rimless.

# TERMS AND CONDITIONS OF SALE

#### 1. DEFINITIONS AND INTERPRETATION

1.1 In these Conditions:

**Contract** - means any contract for the supply of Goods and/or Services between us and you in accordance with these Conditions;

Conditions - means these terms and conditions as amended from time to time in accordance with clause 12.7, including any special terms and conditions confirmed in writing by us;

Goods - means the goods (or any part of them) including ophthalmic lenses and ophthalmic frames which we shall supply in accordance with these Conditions, under an order which is accepted by us;

Goods Specification – means any specification for the Goods, such as (without limitation) lens prescriptions and measurements relating to the size and shape of lenses, including any relevant plans or drawings, as set out in an order which is accepted by us and any agreed amendments to that specification agreed in writing by you and us;

Services - means the services (if any) supplied by us to you as set out in the Service Specification; Service Specification – means any specification for the Services, such as (without limitation) manufacturing Goods in accordance with the Goods Specification and fitting Goods into phthalmic frames supplied by you or us as set out in an order which is accepted by us and any agreed amendments to that specification agreed in writing by you and us:

agreed amendments to that specification agreed in writing by you and us; **Us** - means The Norville Group Limited, registered in England and Wales with company number 01420296 and "we" and "our" shall be construed accordingly;

You - means the person or firm placing an order for the Goods and/or Services and entering into the Contract with us and "your" shall be construed accordingly;

- 1.2 All rights expressly reserved by or granted to us by these Conditions shall be without prejudice to any other rights which we may have from time to time.
- 1.3 Unless expressly stated otherwise, where our prior written consent is required in these Conditions, then we shall be under no obligation not to unreasonably withhold or delay giving that consent. We shall be under no duty or obligation to you to justify or provide a reason for our decision.
- 1.4 In these Conditions, the following rules apply:
- 1.4.1 a **person** includes a natural person, corporate or unincorporated body (whether or not having separate legal personality);
- 1.4.2 a reference to a party includes its personal representatives, successors or permitted assigns;
- 1.4.3 a reference to a statute or a statutory provision is a reference to such statute or statutory provision as amended or re-enacted. A reference to a statute or a statutory provision includes any subordinate legislation made under that statute or statutory provision, as amended or re-enacted;
- 1.4.3 any phrase introduced by the terms including, include, in particular or any similar expression shall be construed as illustrative and shall not limit the sense of the words preceding those terms; and
- 1.4.4 a reference to writing or written includes faxes and emails.

#### 2. BASIS OF CONTRACT

- 2.1 These Conditions shall apply to all Contracts for the supply of Goods and/or Services by us to you to the exclusion of all other terms and conditions, including any terms and conditions which you may purport to apply under any purchase order. No variation of these Conditions shall be binding unless agreed in writing by us. These Conditions set out the entire agreement to the exclusion of all other terms and conditions that you seek to impose or incorporate or which are implied by trade, custom, practice or course of dealing. Acceptance of delivery of the Goods shall be deemed conclusive evidence of your acceptance of these Conditions.
- 2.2 Our employees or agents are not authorised to make any statements, promises, representations assurances or warranties concerning the Goods and/or the Services unless confirmed by us in writing. In entering into a Contract, you acknowledge that you do not rely on any such statements, promises, representations, assurances or warranties which are not so confirmed. Without limiting the foregoing,

it remains your sole responsibility to ensure that the Goods and/or the Services are of a suitable specification for your purposes.

- 2.3 Where the Goods are to be delivered in instalments, each instalment shall constitute a separate Contract. Failure by us to deliver any instalment shall not entitle you to treat the Contract as repudiated.
- 2.4 All samples, specifications, descriptive matter, drawings and particulars of weights, dimensions and performance issued by us and/or contained in our catalogues and brochures and/or on our website are approximate only and are not intended to form the basis of any Contract or have any contractual force.
- 2.5 We reserve the right to withdraw any offer or special promotion displayed in the catalogue that in our opinion is being abused. However, in the event that you have already placed an order that we have accepted we will provide you with a full refund for any money received.
- 2.6 Any quotation given by us shall not constitute an offer and is only valid for a period of 30 days from its issue.
- 2.7 All of theses Conditions shall apply to the supply of both Goods and Services except where application to one or the other is specified.

#### 3. ORDERS AND SPECIFICATIONS

- 3.1 All orders for Goods and/or Services shall be deemed to be an offer by you to purchase Goods and/or Services pursuant to these Conditions. No order submitted by you shall be deemed to have been accepted by us unless and until the Goods are delivered and/or the Services are supplied to you or, if earlier, your order is confirmed in writing as being accepted by us.
- 3.2 You shall be responsible for ensuring the accuracy of the terms of any order, and, (if submitted by you), the Goods Specification and the Service Specification and for giving us any necessary information and materials relating to the Goods and/or the Services as we may reasonably require and within a sufficient time to enable us to perform the Contract in accordance with these Conditions.
- 3.3 No order which has been accepted by us may be cancelled by you except with our prior written consent and on terms that you shall indemnify us in full against all loss (including loss of profit), costs (including the cost of all labour and material used), damages, charges and expenses incurred by us as a result of cancellation.
- 3.4 We reserve the right to make changes in design or modify or improve Goods without imposing obligations on ourselves to incorporate any such modifications or improvements into Goods previously manufactured.
- 3.5 We reserve the right to amend the specification of the Goods and/or the Goods Specification and/or make changes to the Services and/or the Services Specification to apply with any applicable statutory or regulatory requirements or which do not materially affect the nature, quality or performance of the Goods and/or Services and we shall notify you in any such event.
- 3.6 Where you specify the Goods Specification and/or the Service Specification, such specification shall be subject to reasonable commercial variation other than where expressly agreed in writing with you. You shall indemnify us in respect of all liabilities, costs, claims, expenses, damages and losses (including any direct, indirect or consequential losses, loss of profit, loss of reputation and all interest, penalties and legal and other professional costs and expenses) suffered or incurred

by us in respect of any claims made against us for actual or alleged infringement of a third party's intellectual property rights arising out of or in connection with our use of any specification provided by you. This clause 3.6 shall survive termination of the Contract.

#### 4. PRICE OF THE GOODS AND SERVICES

- 4.1 The price of the Goods and the Services shall be the prices quoted in the most recently published version of the catalogue for the Goods.
- 4.2 While we try to ensure that all advertised prices are accurate, errors may occur. If we discover an error in the price of Goods and/or the Services you have ordered, we will inform you as soon as possible and give you the option of re-confirming the order at the correct price or cancelling it. If we are unable to contact you, we will treat the order as cancelled. If you have already paid for the Goods and the Services (if applicable) and the order is subsequently cancelled, you will receive a full refund.
- 4.3 We reserve the right to increase the price of the Goods, and/or the Services by giving you notice at any time before delivery, to reflect any increase in the cost of the Goods and/or the Services to us that is due to:
- 4.3.1 any factor beyond our control (including foreign exchange fluctuations, increases in taxes and duties, and increases in labour, materials and other manufacturing costs);
- 4.3.2 any request by you to change the delivery date(s), quantities or types of Goods and/or Services ordered, or the Goods Specification, or the Service Specification; or
- 4.3.3 any delay caused by any of your instructions in respect of the Goods and/or the Services or your failure to give us adequate or accurate information or instructions in respect of the Goods and/or the Services.
- 4.4 Except as otherwise agreed in writing by us, all prices are given by us on an ex-works basis, and where we agree to deliver the Goods otherwise than at our premises, you will be liable to pay our charges for transport, packing and insurance.
- 4.5 Unless stated otherwise, the price is exclusive of any applicable value added tax, which you shall automatically be liable to pay us at the rate from time to time in force.

#### 5. TERMS OF PAYMENT

- 5.1 Payment for the Goods and the Services (if applicable) is required from you via your account with us in full within 30 days of the end of the month following delivery of the Goods or (where we waived the requirement for you to set up an account with us) by credit or debit card in full at the time of placing your order. Receipt of payment by us does not amount to us accepting your order, and your order only becomes binding as stated in clause 3.1. The time of payment shall be of the essence of the Contract.
- 5.2 We reserve the right to refuse an order, or require payment by bank or credit card, where any order placed by you would, if accepted by us, take you over the credit limit on your account with us.
- 5.3 In the event that a payment is dishonoured by your bank or credit card provider, they (being your bank, credit card provider or our debt collection company) may charge a fee. Where we incur any fee or liability as a result of a dishonoured payment, you will be liable to reimburse us in full for the amount we have incurred.
- 5.4 All credit and charge card holders are subject to validation checks and authorisation by the card issuer. If the issuer of your payment card refuses to authorise payment to us, we will not be liable for any delay or non-delivery. In addition, in the interests of preventing fraudulent use of credit, debit and charge cards, we may validate the names, addresses and other information supplied by you during the order process against commercially available records (e.g. Electoral Roll data, Credit Reference Services). A third party may also be instructed to complete these checks. By ordering from our website you consent to such checks being made. We may need to contact you by letter, telephone or email to verify details before we are able to process and dispatch your order or we may be unable to accept your order. Any information given may be disclosed to a registered Credit Reference Agency which may keep a record of the information. All information provided will be treated in accordance with the Data Protection Act 1998. These measures are taken as extra protection for you, to ensure your online shopping experience with us is as safe and secure as possible.
- 5.5 If you fail to make any payment on the due date (including if any payment is dishonoured by your bank or credit card provider), then we reserve the right to cancel the Contract or suspend further deliveries to you, and/or charge you interest in accordance with the Late Payment of Commercial Debts (Interest) Act 1998.
- 5.6 You shall not withhold payment or other amount due to us by reason of any right of set-off or counterclaim that you may have or allege to have or for any other reason whatsoever.

#### 6. DELIVERY

- 6.1 We will not dispatch your Goods or perform the Services prior to payment in full being received by us, or prior to any validation checks being satisfactorily completed. Your Goods will normally be delivered within five working days thereafter, unless a longer timescale is indicated in the catalogue (UK mainland only).
- 6.2 We may deliver your Goods in one instalment, or a number of separate instalments. You shall make all arrangements to take delivery of the Goods whenever they are tendered for delivery.6.3 Any dates quoted for delivery of the Goods and performance of the Services are approximate
- 6.3 Any dates quoted for delivery of the Goods and performance of the Services are approximate only and we shall not be liable for any delay in delivery of the Goods and/or performance of the Services howsoever caused. Time for delivery shall not be of the essence of the Contract. We may deliver the Goods and perform the Services in advance of the quoted delivery date upon giving you reasonable notice.
- 6.4 If you fail to take delivery of the Goods or fail to give us adequate delivery instructions at the time stated for delivery, then we reserve the right to store the Goods until actual delivery and charge you for the reasonable costs (including insurance) of storage, or sell the Goods at the best price readily obtainable and (after deducting all reasonable storage and selling expenses) account to you for the excess over the price under the Contract or charge you for any shortfall below the price under the Contract.
- 6.5 You shall be deemed to have accepted the Goods 14 days after delivery to you. Subject to clauses 8.2 to 8.4 (inclusive), after acceptance, you shall have no right to reject Goods that are not in accordance with the Contract. Notwithstanding the Sale of Goods Act 1979, acceptance of some of the Goods by you, whether conforming to the Contract or not, shall deprive you of the right to reject the rest of the Goods, whether they conform to the Contract or not.
- 6.6 No Goods delivered to you which are in accordance with this Contract will be accepted for return. Any such Goods returned by you may, at our discretion, be returned to you or stored at your cost without prejudice to our other rights and remedies.
- 6.7 Any Goods that are returned, whether defective or otherwise, shall be returned at your cost in the same condition as delivered to you, complete with the original packaging, materials and inserts and with the original delivery note for those Goods. The risk in those Goods does not pass to us until we have received them from you.
- 6.8 If you have an account with The Norville Group, and are purchasing prescription work, postage costs will be in line with the terms agreed between you and us. Postage costs for customers without accounts or from outside the UK mainland can be obtained by contacting us prior to placing your order.

# TERMS AND CONDITIONS OF SALE

#### 7. RISK AND TITLE

7.1 Risk of damage to or loss of the Goods shall pass to you at the time we notify you that the Goods are available for collection (in the case of Goods to be collected) or at the time of delivery or, if you fail to take delivery, at the time we tender the Goods for delivery (in the case of Goods to be delivered).

7.2 Notwithstanding delivery and the passing of risk in the Goods or any other provision of these Conditions, the legal and equitable title in the Goods shall not pass to you until we have received in cleared funds payment in full of the price of the Goods and the supply of the Services (if applicable) or, if later, at the time risk of damage to or loss of the Goods shall have passed to you. 7.3 Until such time as the title in the Goods passes to you, you shall hold the Goods as our fiduciary agent and bailee, you shall keep the Goods separate from your own and those of third parties, you shall keep the Goods properly stored, protected, insured and identified as our property, and you shall not resell or use the Goods.

7.4 Until such time as the title in the Goods passes to you (and provided the Goods are still in existence and have not been resold) we shall be entitled, at any time, to require you to return the Goods to us (at your cost) and, if you fail to do so seek a court order to permit us to enter upon any premises where the Goods are stored and repossess the Goods.

### 8. WARRANTIES

8.1 You hereby warrant and represent to us that you are purchasing the Goods in the course of your business and not as a consumer (within the meaning of the Consumer Rights Act 2015). You shall indemnify us in respect of all direct and indirect loss and other liability whatsoever arising as a result of your breach of clause 8.1.

8.2 We warrant to you that the Goods will, at the time of delivery, be of satisfactory quality, be free from material defects and materially correspond to any description or specification given by us in writing to you. For the avoidance of doubt, we do not warrant the suitability of the Goods for any specific purpose, even if that purpose is made known to us before you place your order.
8.3 Subject to clause 8.2, all warranties, conditions or other terms implied by statute or common law, including (without limitation) warranties as to quality, freedom from defects and fitness for purpose) are excluded to the fullest extent permitted by the applicable law. You hereby acknowledge this disclaimer and agree that it is reasonable in all the circumstances.

8.4 Any claim by you which is based on breach of clause 8.2 shall be notified to us in writing within 14 days of delivery to you or (where the breach was not apparent on reasonable inspection) within a reasonable time after discovery of the breach. If delivery is not refused, and you do not notify us accordingly, you shall not be entitled to reject the Goods and we shall have no liability for such breach, and you shall be bound to pay the price as if the Goods had been delivered in accordance with the Contract.

8.5 Subject to clause 9.4, if:

8.5.1 you give us notice in accordance with clause 8.4 and;

8.5.2 we are given a reasonable opportunity of examining the Goods you claim are defective; and 8.5.3 you return such Goods to our place of business at your cost,

we shall, at our option, repair or replace defective Goods, or refund or issue a credit note for the price of defective Goods in full.

8.6 We warrant to you that the Services will be provided using reasonable skill and care.

#### 9. LIABILITY

9.1 Except in respect of death or personal injury caused by our negligence, we shall not be liable to you by reason of any representation (unless fraudulent), or any implied warranty, condition or other term, or any duty at common law or under the express terms of the Contract, for any indirect, special or consequential loss or damage (whether for loss of profit or otherwise), costs, expenses or other claims for compensation whatsoever (whether caused by our negligence or that of our employees, agents or otherwise) which arise out of or in connection with the supply of Goods or their use or resale by you or the performance of the Services, and our entire liability under or in connection with the Contract shall not exceed the price of the Goods and the Services (if applicable), except as expressly provided in these Conditions.

9.2 If we fail to deliver the Goods (or any instalment) for any reason other than any cause beyond our reasonable control or your fault, and we are accordingly liable to you, our liability shall be limited to the excess (if any) of the cost to you (in the cheapest available market) of similar goods to replace those not delivered over the price of the Goods.

9.3 Where you accept or have been deemed to have accepted the Goods, then we shall have no liability whatsoever to you in respect of the Goods (save where the breach was not apparent on reasonable inspection in accordance with clause 8.4).

9.4 We shall not be liable for the Goods' failure to comply with the warranty in clause 8.2 if:

9.4.1 you make any further use of such Goods after giving a notice in accordance with clause 8.4;
9.4.2 the defect arises because you failed to follow our oral or written instructions as to the storage, use or maintenance of the Goods or (if there are none) good trade practice;

9.4.3 the defect arises as a result of us following any drawing, design, Goods Specification or Service Specification supplied by you;

9.4.4 you alter or repair such Goods without our prior written consent;

9.4.5 the defect arises as a result of fair wear and tear, wilful damage, negligence, or abnormal working conditions;

9.4.6 the Goods differ from their description and/or the Goods Specification (as applicable) as a result of changes made to ensure they comply with applicable statutory or regulatory standards.
9.5 We shall have no liability to you for late delivery or short delivery of the Goods.

9.6 If our performance of any of our obligations in respect of the Services (if applicable) is prevented or delayed by any act or omission by you or failure by you to perform any relevant obligation (Customer Default):

9.6.1 we shall without limiting our other rights and remedies, have the right to suspend performance of the Services until you remedy the Customer Default, and to rely on the Customer default to relieve us from the performance of any of our obligations to the extent that the Customer Default prevents or delays our performance of our obligations;

9.6.2 we shall not be liable for any costs or losses sustained or incurred by you arising directly or indirectly from our failure or delay to perform any of our obligations as set out on this clause 9.6; 96.3 you shall reimburse us on demand for any costs or losses sustained or incurred by us arising directly or indirectly from the Customer Default.

9.7 This clause 9 shall survive termination of the Contract

#### 10. PRODUCT SAFETY

You agree to satisfy yourself that the Goods are fit for your intended purpose and comply with all relevant laws, regulations and other requirements, including (but not limited to) the General Product Safety Regulations 2005, the rules of the General Optical Council, the Association of British Dispensing Opticians, the Federation of Ophthalmic and Dispensing Opticians and any additional safety regulations or guidelines published from time to time to the extent that they apply to the Goods, and you undertake to indemnify us in respect of any and all claims arising from the Goods being unsafe as a result of your failure to comply therewith.

#### 11. YOUR NON-PAYMENT OR INSOLVENCY

Without limiting our other rights and remedies, if you fail to pay any amount due under the Contract on the due date for payment and/or you make any voluntary arrangement, enter administration or liquidation, become bankrupt, insolvent, cease to trade, threaten to cease to trade or commit any other act of bankruptcy (or it appears to us that you are likely to fail to pay an amount due or commit any of these acts) we reserve the right to cancel the Contract with immediate effect by giving written notice to you or suspend any further deliveries of Goods and/or supply of Services to you under the Contract without any liability to you.

#### 12. GENERAL

12.1 We shall not be liable to you or deemed to be in breach of Contract by reason of delay or failure to perform any of our obligations if the delay or failure is due to an act or cause beyond our reasonable control.

12.2 These Conditions shall not be enforceable by any person other than you, the buyer of the Goods and Services (if applicable) with whom we have entered into a Contract.

12.3 Any notice required or permitted to be given by either party to the other under these Conditions shall be in writing addressed to the other party's principal place of business.

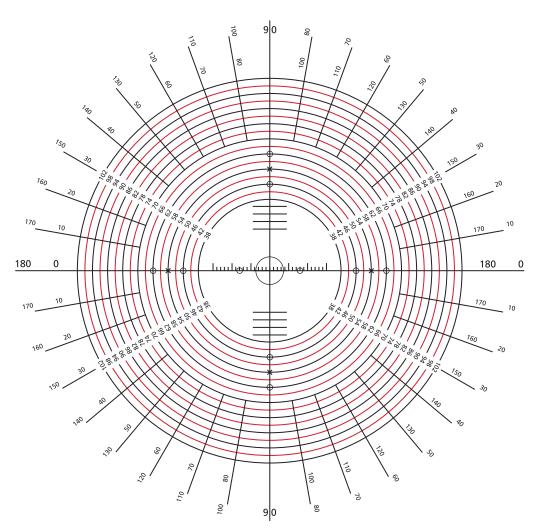
12.4 A waiver by us of any right under the Contract or law is only effective if it is in writing and shall not be deemed to be a waiver of any subsequent breach or default. No failure or delay by us in exercising any right or remedy under the Contract or by law shall constitute a waiver of that or any other right or remedy, nor prevent or restrict our further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall prevent or restrict the further exercise of that or any other right or remedy.

12.5 Nothing in the Contract is intended to, or shall be deemed to, establish any partnership or joint venture between any of the parties, nor constitute either party the agent of another party for any purpose. Neither party shall have authority to act as agent for, or to bind, the other party in any way.

12.6 Where any law or court deems any Condition to be invalid or unenforceable in whole or in part, then the offending part shall be removed and the validity of the remainder of the Conditions shall not be affected.

12.7 Except as set out in these Conditions, no variation of the Contract, including the introduction of any additional terms and conditions shall be effective unless agreed in writing and signed by us. 12.8 We may at any time assign, transfer, mortgage, charge, subcontract or deal in any other manner with all or any of our rights under the Contract and may subcontract or delegate in any manner any or all of our obligations under the Contract to any third party.

12.9 You shall not, without our prior written consent, assign, transfer, charge, subcontract, declare a trust over or deal in any other manner with all or any of your rights or obligations under the Contract


12.10 The Contract and these Conditions and any dispute or claim arising out of or in connection with their subject matter or formation (including non-contractual disputes or claims) shall be governed by and construed in accordance with the laws of England and Wales, and each party irrevocably agrees that the courts of England and Wales shall have exclusive jurisdiction to settle such disputes and claims.

12.11 We reserve the right to monitor and record telephone calls our staff receive and make, in order to monitor staff performance and ensure the highest service possible is provided to our customers.

12.12 The copyright in all photographs, images and descriptions contained in the catalogues and brochures for the Goods and on our website are owned by us, and may not be reproduced without our express consent.

12.13 If the performance of the Contract or any obligation hereunder is prevented by force majeure, we shall be excused performance, provided that we shall use reasonable endeavours to remove such cause(s) of non-performance, and shall continue performance hereunder without delay whenever such cause(s) are removed. For the purpose of these Conditions, "force majeure" shall include Acts of God, strikes, lock-outs, industrial action, fire, accident, lightning, earthquake, volcanic activity, storms, flood, shortage of supply of raw materials, lack of mains power, explosion, war and any circumstance beyond our reasonable control.

12.14 Clauses which expressly or by implication have effect after termination shall remain in full force and effect.



# TO DETERMINE MINIMUM BLANK DIAMETER.

Centre eyeshape. Then move the frame or lens by any specified decentration but **in the opposite directions** I.E. out for In, Down for Up etc. Then read off minimum effective diameter circle measurement. Add 2mm depth of V bevel = E.L.D. which is the smallest lens diameter needed to glaze.

# Nationwide Rx Service Contact Guide

### **Communication Network**

All Norville regional locations are directly linked from the Gloucester Hub switchboard. Individual and branch dialling codes will still connect to your dialled location.

Gloucester (Hub laboratory) Service House, Magdala Road, Gloucester GL1 4DG

Phone: 01452 528686 • Fax: 01452 411094

Email: rxsales@norville.co.uk

**Bolton** Folds Road, Turner Bridge, Bolton BL1 2TU

Phone: 01204 381224 • Fax: 01204 388906

Email: bolton@norville.co.uk

Edinburgh Grange Road, Houstoun, Livingston, Nr. Edinburgh EH54 5DE

Phone: 01506 434261 • Fax: 01506 431851

Email: livingston@norville.co.uk

**Seaham** Unit 6A, Chevychase Court, Seaham Grange Estate, Seaham SR7 OPR

Phone: 0191 523 8023 • Fax: 0191 523 8024

Email: seaham@norville.co.uk

Direct Computer Link - EDI - contact IT Department, Gloucester

# **Overnight Courier**

Couriers travel overnight between all Norville regional locations so your orders can be sent via any laboratory for internal transfer to Norville Specialist Centres.

# **Specialist Technical Skills**

| SKILLS                        | NORVILLE LOCATIONS  |
|-------------------------------|---------------------|
| Diving and Swimming Goggles   | Gloucester          |
| Franklin Splits               | Livingston & Seaham |
| Free-form Manufacturing       | Gloucester          |
| Hoya                          | Livingston & Seaham |
| Lindberg/Specialist Rimless   | All Locations       |
| Polycarbonate                 | Bolton              |
| Presto LVA & Prism Controlled | Livingston & Seaham |
| Protective Rx                 | Bolton              |
| Rimless Glazing               | All Locations       |
| Sports Wrap Glazing           | Gloucester          |
| Vac Coating                   | Gloucester          |
| Zeiss                         | Livingston & Seaham |
| Online Ordering               | www.norville.co.uk  |



**GLOUCESTER** 

Service House, Magdala Road, Gloucester GL1 4DG

Phone: 01452 528686 Fax: 01452 411094

Email: rxsales@norville.co.uk

www.norville.co.uk